Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Ponton, Camilo"
Sort by:
Holocene aridification of India
by
Giosan, Liviu
,
Kumar, Pushpendra
,
Ponton, Camilo
in
Aridification
,
Bay of Bengal
,
Carbon isotopes
2012
Spanning a latitudinal range typical for deserts, the Indian peninsula is fertile instead and sustains over a billion people through monsoonal rains. Despite the strong link between climate and society, our knowledge of the long‐term monsoon variability is incomplete over the Indian subcontinent. Here we reconstruct the Holocene paleoclimate in the core monsoon zone (CMZ) of the Indian peninsula using a sediment core recovered offshore from the mouth of Godavari River. Carbon isotopes of sedimentary leaf waxes provide an integrated and regionally extensive record of the flora in the CMZ and document a gradual increase in aridity‐adapted vegetation from ∼4,000 until 1,700 years ago followed by the persistence of aridity‐adapted plants after that. The oxygen isotopic composition of planktonic foraminiferGlobigerinoides ruberdetects unprecedented high salinity events in the Bay of Bengal over the last 3,000 years, and especially after 1,700 years ago, which suggest that the CMZ aridification intensified in the late Holocene through a series of sub‐millennial dry episodes. Cultural changes occurred across the Indian subcontinent as the climate became more arid after ∼4,000 years. Sedentary agriculture took hold in the drying central and south India, while the urban Harappan civilization collapsed in the already arid Indus basin. The establishment of a more variable hydroclimate over the last ca. 1,700 years may have led to the rapid proliferation of water‐conservation technology in south India. Key Points Under low insolation, central India was as arid in late Holocene as during LGM High salinity events in Bay of Bengal suggest dry episodes during late Holocene Late Holocene cultural changes in India coincide with steps in aridification
Journal Article
Reconciling drainage and receiving basin signatures of the Godavari River system
by
Peterse, Francien
,
Zwart, Huub Michel
,
Giosan, Liviu
in
Abundance
,
Anthropogenic factors
,
Carbon
2018
The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of “old” or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of the offshore sedimentary record. While changes in water flow and sediment transport resulting from recent dam construction have drastically impacted the flux, loci, and composition of OC exported from the modern Godavari basin, complicating reconciliation of modern-day river basin geochemistry with that recorded in continental margin sediments, such investigations provide important insights into climatic and anthropogenic controls on OC cycling and burial.
Journal Article
Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation
by
McIntyre, Cameron
,
Wacker, Lukas
,
Giosan, Liviu
in
Accelerated erosion
,
Acceleration
,
Analysis
2017
Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.
Journal Article
Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea
by
Cooper, Matthew J.
,
Giosan, Liviu
,
Tabrez, Ali R.
in
Arabian Sea
,
Continental shelves
,
Geobiology
2012
We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus‐23 is located close to the modern Indus River, while Indus‐10 is positioned ∼100 km further west. The Holocene transgression at Indus‐10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus‐10 have higherεNdvalues compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non‐Indus sources to Indus‐10 peaked between 11 ka and 8 ka. A hiatus at Indus‐23 from 8 ka until 1.3 ka indicates non‐deposition or erosion of existing Indus Shelf sequences. HigherεNdvalues seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4–6 ka and was higher at Indus‐10 compared to Indus‐23. Fine‐grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings. Key Points Some widely used geochemical proxies not suitable for weathering Reworking is an important process in the Indus region Continental shelves not necessarily good places for continental weathering
Journal Article
Isotopic evidence for quasi-equilibrium chemistry in thermally mature natural gases
by
Lawson, Michael
,
Kitchen, Nami
,
Peterson, Brian
in
Alkanes
,
Aromatic compounds
,
Biodegradation
2020
Natural gas is a key energy resource, and understanding how it forms is important for predicting where it forms in economically important volumes. However, the origin of dry thermogenic natural gas is one of the most controversial topics in petroleum geochemistry, with several differing hypotheses proposed, including kinetic processes (such as thermal cleavage, phase partitioning during migration, and demethylation of aromatic rings) and equilibrium processes (such as transition metal catalysis). The dominant paradigm is that it is a product of kinetically controlled cracking of longchain hydrocarbons. Here we show that C2+
n-alkane gases (ethane, propane, butane, and pentane) are initially produced by irreversible cracking chemistry, but, as thermal maturity increases, the isotopic distribution of these species approaches thermodynamic equilibrium, either at the conditions of gas formation or during reservoir storage, becoming indistinguishable from equilibrium in the most thermally mature gases. We also find that the pair of CO₂ and C₁ (methane) exhibit a separate pattern of mutual isotopic equilibrium (generally at reservoir conditions), suggesting that they form a second, quasi-equilibrated population, separate from the C₂ to C₅ compounds. This conclusion implies that new approaches should be taken to predicting the compositions of natural gases as functions of time, temperature, and source substrate. Additionally, an isotopically equilibrated state can serve as a reference frame for recognizing many secondary processes that may modify natural gases after their formation, such as biodegradation.
Journal Article
Sustained wood burial in the Bengal Fan over the last 19 My
2019
The Ganges–Brahmaputra (G-B) River system transports over a billion tons of sediment every year from the Himalayan Mountains to the Bay of Bengal and has built the world’s largest active sedimentary deposit, the Bengal Fan. High sedimentation rates drive exceptional organic matter preservation that represents a long-term sink for atmospheric CO₂. While much attention has been paid to organic-rich fine sediments, coarse sediments have generally been overlooked as a locus of organic carbon (OC) burial. However, International Ocean Discovery Program Expedition 354 recently discovered abundant woody debris (millimeter- to centimeter-sized fragments) preserved within the coarse sediment layers of turbidite beds recovered from 6 marine drill sites along a transect across the Bengal Fan (∼8°N, ∼3,700-m water depth) with recovery spanning 19 My. Analysis of bulk wood and lignin finds mostly lowland origins of wood delivered episodically. In the last 5 My, export included C₄ plants, implying that coarse woody, lowland export continued after C₄ grassland expansion, albeit in reduced amounts. Substantial export of coarse woody debris in the last 1 My included one wood-rich deposit (∼0.05 Ma) that encompassed coniferous wood transported from the headwaters. In coarse layers, we found on average 0.16 weight % OC, which is half the typical biospheric OC content of sediments exported by the modern G-B Rivers. Wood burial estimates are hampered by poor drilling recovery of sands. However, high-magnitude, low-frequency wood export events are shown to be a key mechanism for C burial in turbidites.
Journal Article
Late Miocene Uplift and Exhumation of the Lesser Himalaya Recorded by Clumped Isotope Compositions of Detrital Carbonate
2024
The Himalaya orogen evolved since the Eocene as the Tethyan‐, Greater‐, Lesser‐ and Sub‐Himalaya thrust sheets were uplifted and exhumed in sequence. Reconstructing the provenance of sediment in Himalayan River systems can inform on stages in the tectonic history of the orogen. Here, we analyze the oxygen, carbon and “clumped” isotope compositions of carbonate minerals from Himalayan bedrock, Ganga River sediments and Bengal Fan turbidite deposits. We demonstrate that river sediments consist of a mixture of Himalayan‐derived and authigenic calcite precipitated in the river system. The relative abundance and clumped isotope apparent temperatures of detrital calcite in turbidite deposits decreased between the Late Miocene and Pliocene, while chemical weathering intensity did not increase during this interval. Considered together, these results reflect the establishment of the Lesser Himalaya as an important carbonate sediment source for Himalayan rivers, driven by the uplift and exhumation of this thrust sheet. Plain Language Summary The Himalaya Range consists of a series of tectonic units that accreted during the last 50 million years as the Indian and Asian continents collided. Sediment provenance analyses are commonly used to reconstruct stages in tectonic evolution of mountain‐belts, but often capture local conditions and/or are altered by various sediment‐transport processes. We overcome these complexities by measuring oxygen, carbon and “clumped” isotope compositions of carbonate minerals in turbidite deposits cored from the Bengal Fan, to constrain sediment provenance at a Himalaya‐wide scale since the Early Miocene. Considered together with records describing weathering intensity, our data suggests that the Lesser Himalaya became the dominant source for detrital carbonate as this tectonic‐unit was uplifted and exhumed between the Late Miocene and Pliocene. Key Points Detrital calcite in Himalayan river systems derives from Himalayan‐bedrock and authigenic sources TΔ47 values of detrital calcite in the Bengal Fan drop between the Late Miocene and Pliocene while weathering intensity remains invariant On a Himalayan‐wide scale, the Lesser Himalaya became an important source of detrital carbonate between the Late Miocene and Pliocene
Journal Article
Climate control on terrestrial biospheric carbon turnover
by
Montluçon, Daniel B.
,
Feng, Xiaojuan
,
Schefuß, Enno
in
Earth, Atmospheric, and Planetary Sciences
,
Physical Sciences
2021
Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystemscale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basinwide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biosphericcarbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
Journal Article
From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India
by
Zwart, Huub M.
,
Kirkels, Frédérique M. S. A.
,
Peterse, Francien
in
Carbon
,
Carbon content
,
Composition
2022
Monsoonal rivers play an important role in the land-to-sea transport of soil-derived organic carbon (OC). However, spatial and temporal variation in the concentration, composition, and fate of this OC in these rivers remains poorly understood. We investigate soil-to-sea transport of soil OC by the Godavari River in India using glycerol dialkyl glycerol tetraether (GDGT) lipids in soils, river suspended particulate matter (SPM), and riverbed sediments, as well as in a marine sediment core from the Bay of Bengal. The abundance and composition of GDGTs in SPM and sediments in the Godavari River differs between the dry and wet season. In the dry season, SPM and riverbed sediments from the whole basin contain more 6-methyl branched GDGTs (brGDGTs) than the soils. In the upper basin, where mobilisation and transport of soils is limited due to deficient rainfall and damming, contributions of 6-methyl brGDGTs in SPM and riverbed sediments are relatively high year-round, suggesting that they have an aquatic source. Aquatic brGDGT production coincides with elevated values of the isoprenoid GDGT-0 / crenarchaeol ratio in SPM and riverbed sediments from the upper basin, indicating low-oxygen conditions. In the wet season, brGDGT distributions in SPM from the lower basin closely resemble those in soils, mostly from the north and east tributaries, corresponding to precipitation patterns. The brGDGT composition in SPM and sediments from the delta suggests that soil OC is only effectively transported to the Bay of Bengal in the wet season, when the river plume extends beyond the river mouth. The sediment geochemistry indicates that also the mineral particles exported by the Godavari River primarily originate from the lower basin, similar to the brGDGTs, suggesting that they are transported together. However, river depth profiles in the downstream Godavari reveal no hydrodynamic sorting effect on brGDGTs in either season, indicating that brGDGTs are not closely associated with mineral particles. The similarity of brGDGT distributions in bulk and fine-grained sediments (≤ 63 µm) further confirms the absence of selective transport mechanisms. Nevertheless, the composition of brGDGTs in a Holocene, marine sediment core near the river mouth appears substantially different from that in the modern Godavari basin, suggesting that terrestrial-derived brGDGTs are rapidly lost upon discharge into the Bay of Bengal and/or overprinted by marine in situ production. The large change in brGDGT distributions at the river–sea transition implies that this zone is key in the transfer of soil OC, as well as that of the environmental signal carried by brGDGTs from the river basin.
Journal Article
Impacts of sediment supply and local tectonics on clinoform distribution: the seismic stratigraphy of the mid Pleistocene-Holocene Indus Shelf
by
Henstock, Timothy J.
,
Giosan, Liviu
,
Macdonald, David I. M.
in
Deformation
,
Earth and Environmental Science
,
Earth Sciences
2012
We present results from the first high-resolution seismic reflection survey of the inner Western Indus Shelf, and Indus Delta, Arabian Sea. The results show major regional differences in sedimentation across the shelf from east to west, as well as north to south, both since the Last Glacial Maximum (~20 ka) and over longer time scales. We identify 10 major regional reflectors, interpreted as representing sea level lowstands. Strong compressive folding is observed underlying a reflector we have called Horizon 6 in the north-western shelf, probably compression associated with the transpressional deformation of the Murray Ridge plate boundary. Downslope profiles show a series of well developed clinoforms, principally at the shelf edge, indicating significant preservation of large packages of sediment during lowstands. These clinoforms have developed close to zones of deformation, suggesting that subsidence is a factor in controlling sedimentation and consequently erosion of the Indus Shelf. These clinoforms fan out from dome features (tectonic anticlines) mostly located close to the modern shoreline.
Journal Article