Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
52 result(s) for "Portmann, F T"
Sort by:
Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration
Global-scale assessments of freshwater fluxes and storages by hydrological models under historic climate conditions are subject to a variety of uncertainties. Using the global hydrological model WaterGAP (Water – Global Assessment and Prognosis) 2.2, we investigated the sensitivity of simulated freshwater fluxes and water storage variations to five major sources of uncertainty: climate forcing, land cover input, model structure/refinements, consideration of human water use and calibration (or no calibration) against observed mean river discharge. In a modeling experiment, five variants of the standard version of WaterGAP 2.2 were generated that differed from the standard version only regarding the investigated source of uncertainty. The basin-specific calibration approach for WaterGAP was found to have the largest effect on grid cell fluxes as well as on global AET (actual evapotranspiration) and discharge into oceans for the period 1971–2000. Regarding grid cell fluxes, climate forcing ranks second before land cover input. Global water storage trends are most sensitive to model refinements (mainly modeling of groundwater depletion) and consideration of human water use. The best fit to observed time series of monthly river discharge or discharge seasonality is obtained with the standard WaterGAP 2.2 model version which is calibrated and driven by daily reanalysis-based WFD/WFDEI (combination of Watch Forcing Data based on ERA40 and Watch Forcing Data based on ERA-Interim) climate data. Discharge computed by a calibrated model version using monthly CRU TS (Climate Research Unit time-series) 3.2 and GPCC (Global Precipitation Climatology Center) v6 climate input reduced the fit to observed discharge for most stations. Taking into account uncertainties of climate and land cover data, global 1971–2000 discharge into oceans and inland sinks ranges between 40 000 and 42 000 km3 yr−1. Global actual evapotranspiration, with 70 000 km3 yr−1, is rather unaffected by climate and land cover uncertainties. Human water use reduced river discharge by 1000 km3 yr−1, such that global renewable water resources are estimated to range between 41 000 and 43 000 km3 yr−1. The climate data sets WFD (available until 2001) and WFDEI (starting in 1979) were found to be inconsistent with respect to shortwave radiation data, resulting in strongly different actual evapotranspiration. Global assessments of freshwater fluxes and storages would therefore benefit from the development of a global data set of consistent daily climate forcing from 1900 to present.
Groundwater use for irrigation – a global inventory
Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha), China (19 million ha) and the USA (17 million ha). Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.
Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study
Human activity has a profound influence on river discharges, hydrological extremes and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the simulation of mean, high- and low-flows. The analysis is performed for 471 gauging stations across the globe for the period 1971-2010. We find that the inclusion of HIP improves the performance of the GHMs, both in managed and near-natural catchments. For near-natural catchments, the improvement in performance results from improvements in incoming discharges from upstream managed catchments. This finding is robust across the GHMs, although the level of improvement and the reasons for it vary greatly. The inclusion of HIP leads to a significant decrease in the bias of the long-term mean monthly discharge in 36%-73% of the studied catchments, and an improvement in the modeled hydrological variability in 31%-74% of the studied catchments. Including HIP in the GHMs also leads to an improvement in the simulation of hydrological extremes, compared to when HIP is excluded. Whilst the inclusion of HIP leads to decreases in the simulated high-flows, it can lead to either increases or decreases in the low-flows. This is due to the relative importance of the timing of return flows and reservoir operations as well as their associated uncertainties. Even with the inclusion of HIP, we find that the model performance is still not optimal. This highlights the need for further research linking human management and hydrological domains, especially in those areas in which human impacts are dominant. The large variation in performance between GHMs, regions and performance indicators, calls for a careful selection of GHMs, model components and evaluation metrics in future model applications.
Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins
Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.
Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use
When assessing global water resources with hydrological models, it is essential to know the methodological uncertainties in the water resources estimates. The study presented here quantifies effects of the uncertainty in the spatial and temporal patterns of meteorological variables on water balance components at the global, continental and grid cell scale by forcing the global hydrological model WaterGAP 2.2 (ISI-MIP 2.1) with five state-of-the-art climate forcing input data-sets. While global precipitation over land during 1971--2000 varies between 103 500 and 111 000 km.sup.3 yr.sup.−1, global river discharge varies between 39 200 and 42 200 km.sup.3 yr.sup.−1 . Temporal trends of global water balance components are strongly affected by the uncertainty in the climate forcing (except human water abstractions), and there is a need for temporal homogenization of climate forcings (in particular WFD/WFDEI). On about 10--20 % of the global land area, change of river discharge between two consecutive 30 year periods was driven more strongly by changes of human water use including dam construction than by changes in precipitation. This number increases towards the end of the 20th century due to intensified human water use and dam construction. The calibration approach of WaterGAP against observed long-term average river discharge reduces the impact of climate forcing uncertainty on estimated river discharge significantly. Different homgeneous climate forcings lead to a variation of Q of only 1.6 % for the 54 % of global land area that are constrained by discharge observations, while estimated renewable water resources in the remaining uncalibrated regions vary by 18.5 %. Uncertainties are especially high in Southeast Asia where Global Runoff Data Centre (GRDC) data availability is very sparse. By sharing already available discharge data, or installing new streamflow gauging stations in such regions, water balance uncertainties could be reduced which would lead to an improved assessment of the world's water resources.
The global water resources and use model WaterGAP v2.2d: model description and evaluation
WaterGAP is a global hydrological model that quantifies human use of groundwater and surface water as well as water flows and water storage and thus water resources on all land areas of the Earth. Since 1996, it has served to assess water resources and water stress both historically and in the future, in particular under climate change. It has improved our understanding of continental water storage variations, with a focus on overexploitation and depletion of water resources. In this paper, we describe the most recent model version WaterGAP 2.2d, including the water use models, the linking model that computes net abstractions from groundwater and surface water and the WaterGAP Global Hydrology Model (WGHM). Standard model output variables that are freely available at a data repository are explained. In addition, the most requested model outputs, total water storage anomalies, streamflow and water use, are evaluated against observation data. Finally, we show examples of assessments of the global freshwater system that can be achieved with WaterGAP 2.2d model output.
Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use
When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.
Multimodel assessment of water scarcity under climate change
Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.
Crossaeuroscale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins
Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.
Impact of climate forcing uncertainty and human water use on global and continental water balance components
The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean). Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.