Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
56 result(s) for "Porto, Graça"
Sort by:
EMQN best practice guidelines for the molecular genetic diagnosis of hereditary hemochromatosis (HH)
Molecular genetic testing for hereditary hemochromatosis (HH) is recognized as a reference test to confirm the diagnosis of suspected HH or to predict its risk. The vast majority (typically >90%) of patients with clinically characterized HH are homozygous for the p.C282Y variant in the HFE gene, referred to as HFE-related HH. Since 1996, HFE genotyping was implemented in diagnostic algorithms for suspected HH, allowing its early diagnosis and prevention. However, the penetrance of disease in p.C282Y homozygotes is incomplete. Hence, homozygosity for p.C282Y is not sufficient to diagnose HH. Neither is p.C282Y homozygosity required for diagnosis as other rare forms of HH exist, generally referred to as non-HFE-related HH. These pose significant challenges when defining criteria for referral, testing protocols, interpretation of test results and reporting practices. We present best practice guidelines for the molecular genetic diagnosis of HH where recommendations are classified, as far as possible, according to the level and strength of evidence. For clarification, the guidelines' recommendations are preceded by a detailed description of the methodology and results obtained with a series of actions taken in order to achieve a wide expert consensus, namely: (i) a survey on the current practices followed by laboratories offering molecular diagnosis of HH; (ii) a systematic literature search focused on some identified controversial topics; (iii) an expert Best Practice Workshop convened to achieve consensus on the practical recommendations included in the guidelines.
Local iron homeostasis in the breast ductal carcinoma microenvironment
Background While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. Methods Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. Results We confirm previous results by showing that breast cancer epithelial cells present an ‘iron-utilization phenotype’ with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an ‘iron-donor’ phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. Conclusions The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.
Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin
Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates cell-intrinsic protective antioxidant responses, while the peptide hormone hepcidin maintains systemic iron homoeostasis, but is pathophysiologically decreased in haemochromatosis and β-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives bone morphogenetic protein 6 (Bmp6) expression in liver sinusoidal endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6–hepcidin response to oral and parenteral iron is impaired, and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6–hepcidin axis, improving iron homoeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in β-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to the control of systemic iron homoeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders. Iron homoeostasis is tightly orchestrated to avoid toxic iron overload. Here Lim and colleagues show that iron excess activates Nrf2 via mitochondrial reactive oxygen species, enhancing the expression of Bmp6 in liver sinusoidal endothelial cells, which in turn promotes hepcidin expression by hepatocytes, decreasing systemic iron levels.
Reticulocyte Antioxidant Enzymes mRNA Levels versus Reticulocyte Maturity Indices in Hereditary Spherocytosis, β-Thalassemia and Sickle Cell Disease
The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and peroxiredoxin 2 (Prx2) are particularly important in erythroid cells. Reticulocytes and other erythroid precursors may adapt their biosynthetic mechanisms to cell defects or to changes in the bone marrow environment. Our aim was to perform a comparative study of the mRNA levels of CAT, GPX1, PRDX2 and SOD1 in reticulocytes from healthy individuals and from patients with hereditary spherocytosis (HS), sickle cell disease (SCD) and β-thalassemia (β-thal), and to study the association between their transcript levels and the reticulocyte maturity indices. In controls, the enzyme mRNA levels were significantly correlated with reticulocyte maturity indices for all genes except for SOD1. HS, SCD and β-thal patients showed younger reticulocytes, with higher transcript levels of all enzymes, although with different patterns. β-thal and HS showed similar reticulocyte maturity, with different enzyme mRNA levels; SCD and HS, with different reticulocyte maturity, presented similar enzyme mRNA levels. Our data suggest that the transcript profile for these antioxidant enzymes is not entirely related to reticulocyte maturity; it appears to also reflect adaptive mechanisms to abnormal erythropoiesis and/or to altered erythropoietic environments, leading to reticulocytes with distinct antioxidant potential according to each anemia.
Haemochromatosis patients' research priorities: Towards an improved quality of life
Chronic diseases are associated with a range of functional and psychosocial consequences that can adversely affect patients' quality of life (QoL). Haemochromatosis (HC) is a genetically heterogeneous disorder characterized by chronic iron overload that can ultimately lead to multiple organ dysfunction. Clinical diagnosis remains challenging due to the nonspecificity of symptoms and a lack of confirmatory genotyping in a substantial proportion of patients. Illness perception among HC patients has not been extensively investigated, lacking relevant information on how to improve their QoL. We present the results of the first worldwide survey conducted in nearly 1500 HC respondents, in which we collected essential demographic information and identified the aspects that concern HC patients the most. Out of all the participants, 45.3% (n = 676) voiced their concern about physical and psychological consequences such as HC-related arthropathies, which can ultimately affect their social functioning. A similar proportion of patients (n = 635, 42.5%) also consider that better-informed doctors are key for improved HC disease management. Taking a patient-centred approach, we expose differences in patients' disease perspective by social and economic influences. We identify potential targets to improve patients' health-related QoL and reflect on strategic measures to foster gender equity in access to health resources. Finally, we make a call for a highly coordinated effort across a range of public policy areas to empower participants in the HC research process and design. Nearly 1500 patients with hereditary HC responded to an anonymized online survey in which research and clinical priorities were addressed regarding this chronic and rare disease.
Iron-enriched diet contributes to early onset of osteoporotic phenotype in a mouse model of hereditary hemochromatosis
Osteoporosis is associated with chronic iron overload secondary to hereditary hemochromatosis (HH), but the causative mechanisms are incompletely understood. The main objective of this study was to investigate the role of dietary iron on osteoporosis, using as biological model the Hfe-KO mice, which have a systemic iron overload. We showed that these mice show an increased susceptibility for developing a bone loss phenotype compared to WT mice, which can be exacerbated by an iron rich diet. The dietary iron overload caused an increase in inflammation and iron incorporation within the trabecular bone in both WT and Hfe-KO mice. However, the osteoporotic phenotype was only evident in Hfe-KO mice fed the iron-enriched diet. This appeared to result from an imbalance between bone formation and bone resorption driven by iron toxicity associated to Hfe-KO and confirmed by a decrease in bone microarchitecture parameters (identified by micro-CT) and osteoblast number. These findings were supported by the observed downregulation of bone metabolism markers and upregulation of ferritin heavy polypeptide 1 (Fth1) and transferrin receptor-1 (Tfrc), which are associated with iron toxicity and bone loss phenotype. In WT mice the iron rich diet was not enough to promote a bone loss phenotype, essentially due to the concomitant depression of bone resorption observed in those animals. In conclusion the dietary challenge influences the development of osteoporosis in the HH mice model thus suggesting that the iron content in the diet may influence the osteoporotic phenotype in systemic iron overload conditions.
Catalase, Glutathione Peroxidase, and Peroxiredoxin 2 in Erythrocyte Cytosol and Membrane in Hereditary Spherocytosis, Sickle Cell Disease, and β-Thalassemia
Catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2) can counteract the deleterious effects of oxidative stress (OS). Their binding to the red blood cell (RBC) membrane has been reported in non-immune hemolytic anemias (NIHAs). Our aim was to evaluate the relationships between CAT, GPx, and Prx2, focusing on their role at the RBC membrane, in hereditary spherocytosis (HS), sickle cell disease (SCD), β-thalassemia (β-thal), and healthy individuals. The studies were performed in plasma and in the RBC cytosol and membrane, evaluating OS biomarkers and the enzymatic activities and/or the amounts of CAT, GPx, and Prx2. The binding of the enzymes to the membrane appears to be the primary protective mechanism against oxidative membrane injuries in healthy RBCs. In HS (unsplenectomized) and β-thal, translocation from the cytosol to the membrane of CAT and Prx2, respectively, was observed, probably to counteract lipid peroxidation. RBCs from splenectomized HS patients showed the highest membrane-bound hemoglobin, CAT, and GPx amounts in the membrane. SCD patients presented the lowest amount of enzyme linkage, possibly due to structural changes induced by sickle hemoglobin. The OS-induced changes and antioxidant response were different between the studied NIHAs and may contribute to the different clinical patterns in these patients.
Iron Related Biomarkers Predict Disease Severity in a Cohort of Portuguese Adult Patients during COVID-19 Acute Infection
Large variability in COVID-19 clinical progression urges the need to find the most relevant biomarkers to predict patients’ outcomes. We evaluated iron metabolism and immune response in 303 patients admitted to the main hospital of the northern region of Portugal with variable clinical pictures, from September to November 2020. One hundred and twenty-seven tested positive for SARS-CoV-2 and 176 tested negative. Iron-related laboratory parameters and cytokines were determined in blood samples collected soon after admission. Demographic data, comorbidities and clinical outcomes were recorded. Patients were assigned into five groups according to severity. Serum iron and transferrin levels at admission were lower in COVID-19-positive than in COVID-19-negative patients. The levels of interleukin (IL)-6 and monocyte chemoattractant protein 1 (MCP-1) were increased in COVID-19-positive patients. The lowest serum iron and transferrin levels at diagnosis were associated with the worst outcomes. Iron levels negatively correlated with IL-6 and higher levels of this cytokine were associated with a worse prognosis. Serum ferritin levels at diagnosis were higher in COVID-19-positive than in COVID-19-negative patients. Serum iron is the simplest laboratory test to be implemented as a predictor of disease progression in COVID-19-positive patients.
Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice
Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2 −/− with hemochromatosis ( Hfe −/− ) or hepcidin-null ( Hamp1 −/− ) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2 / Hamp1 −/− mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2 / Hamp1 −/− BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.