Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Porwal, Rajni"
Sort by:
Protected superconductivity at the boundaries of charge-density-wave domains
Solid 4He may acquire superfluid characteristics due to the frustration of the solid phase at grain boundaries. Here, introducing a negative-U generalized Hubbard model and a coarse-grained semiclassical pseudospin model, we show that an analogous effect occurs in systems with competition among charge-density-waves (CDW) and superconductivity in the presence of disorder, as cuprate or dichalcogenide superconductors. The CDW breaks apart in domains with topologically protected filamentary superconductivity at the interfaces. Our transport measurements, carried out in underdoped La2−xSrxCuO4, with the magnetic field acting as a control parameter, are shown to be in excellent agreement with our theoretical prediction. Assuming superconductivity and CDW phases have similar energies, at intermediate temperatures, the magnetic field drives the system from a fluctuating superconductor to a CDW as expected in the clean limit. Lowering the temperature, the expected clean quantum critical point is avoided and a filamentary phase appears, analogous to 'glassy' supersolid phenomena in 4He. The transition line ends at a second quantum critical point at high-fields. Within our scenario, the filamentary superconducting phase is parasitic with CDW and bulk superconducting phases playing the role of primary competing order parameters.
Crossover from magnetostatic to exchange coupling in La0.67Ca0.33MnO3/YBa2Cu3O7/La0.67Ca0.33MnO3 heterostructures
The influence of YBa2Cu3O4 (YBCO) superconductor layer (S-layer) with varying thickness d-YBCO = 20 to 50 nm on the magnetic coupling between two La0.67Ca0.33MnO3 (LCMO) ferromagnet layers (F-layer, thickness d-LCMO = 50 nm) in F/S/F heterostructures (HSs) was investigated by measuring global magnetization (M) in a temperature (T) range = 2 - 300 K and magnetic field (H) range = 0 - 10 kOe. All the HSs were superconducting with critical temperature (Tc) decreasing from = 78 to 36 K with decrease in d-YBCO, whereas the ferromagnetic ordering temperature Tm = 250 K did not change much. Systematically measured M-H loops of all HSs at both T > Tc and T < Tc show three main results- (a) the two step magnetic reversal above Tc converts into a four step reversal below Tc in HSs with d-YBCO >= 30 nm, (b) the magnetic field corresponding to the additional two switching steps and their magnitude show characteristic evolution with T and d-YBCO and (c) the HS with d-YBCO = 20 nm shows radically different behaviour, where the two step magnetic reversal above Tc continues to persist below Tc and converts into a single step reversal at T << Tc. The first two results indicate magnetostatic coupling between the magnetic domains and the vortices across the two F/S interfaces resulting in reversal dynamics different from that deep within the LCMO layers. Whereas, the result c reveals indirect exchange coupling between LCMO layers through the superconducting YBCO layer, which is a clear experimental evidence of coexistence of ferromagnetism and superconductivity in nm scale F/S/F HSs expected theoretically by C.A.R. Sa de Melo (Physica C 387, 17-25 (2003)).
Strain induced magnetic domain evolution and spin re-orientation transition in epitaxial manganite films
The evolution of magnetic domain structure in epitaxial La\\(_{0.625}\\)Ca\\(_{0.375}\\)MnO\\(_3\\) films on (001) NdGaO\\(_3\\) is monitored as a function of temperature and magnetic field using Magnetic Force Microscopy. We see two distinct regions of magnetic orientational order; one in-plane displaying contrast-less image and the other tilted away from the film plane forming a distinct stripe pattern. A strong domain splitting is observed at the boundary of two regions, which is resilient to reorientation with temperature and magnetic field. We propose a model magnetic free energy functional to explain the mechanism of domain splitting seen in manganite films.
Double criticality in the magnetic field-driven transition of a high-TC superconductor
Driving a two-dimensional superconductor normal by applying a high magnetic field may lead to Cooper pair localization. In this case, there should be a quantum critical point associated with specific scaling laws. Such a transition has been evidenced in a number of low critical temperature superconducting thin films and has been suggested to occur also in high temperature cuprate superconductors. Here we show experimental evidence for two distinct quantum critical regimes when applying perpendicular magnetic fields to underdoped La2-xSrxCuO4 thin films. At intermediate values of the magnetic field (18T-20T), a \"ghost\" QCP is observed, for which the values of the related critical exponents point towards a fermionic -as opposed to bosonic- scenario. At higher (about 37 T) magnetic field, another QCP is observed, which suggests the existence of either a 2D/3D or a clean/dirty temperature crossover.
Electronic reconstruction and enhanced superconductivity at La\\(_{1.6-x}\\)Nd\\(_{0.4}\\)Sr\\(_{x}\\)CuO\\(_{4}\\)/La\\(_{1.55}\\)Sr\\(_{0.45}\\)CuO\\(_{4}\\) bilayer interface
We report enhanced superconductivity in bilayer thin films consisting of superconducting La\\(_{1.6-x}\\)Nd\\(_{0.4}\\)Sr\\(_{x}\\)CuO\\(_{4}\\) with 0.06 \\(\\leq x<\\) 0.20 and metallic but non-superconducting La\\(_{1.55}\\)Sr\\(_{0.45}\\)CuO\\(_{4}\\). These bilayers show a maximum increase in superconducting transition temperature (\\(T_c\\)) of more than 200% for \\(x\\) = 0.06 while no change in \\(T_c\\) is observed for the bilayers with \\(x\\geq\\) 0.20. The analysis of the critical current and kinetic inductance data suggests 2-3 unit cells thick interfacial layer electronically perturbed to have a higher \\(T_c\\). A simple charge transfer model with cation intermixing explains the observed \\(T_c\\) in bilayers. Still the unusually large thickness of interfacial superconducting layers can not be explained in terms of this model. We believe the stripe relaxation as well as the proximity effect also influence the superconductivity of the interface.
Experimental investigation of the magnetic field driven superconductor/ insulator transition in underdoped \\(La_{2-x}Sr_xCuO_4\\) thin films
The magnetic field driven superconductor/insulator transition is studied in a large variety of \\(La_{2-x}Sr_xCuO_4\\) thin films of various Sr dopings. Temperature dependence of the resistivity down to 4.2 or 1.5 K under high pulsed magnetic field (up to 57 T) is analyzed. In particular, the existence of plateaus in the resistance versus temperature curves, in a limited range of temperature, for given values of the magnetic field is carefully investigated. It is shown to be associated to scaling behaviour of the resistance versus magnetic field curves, evocative of the presence of a quantum critical point. A three-dimensional (H,x,T) phase diagram is proposed, taking into account the intrinsic lamellar nature of the materials by the existence of a temperature crossover from quantum-two-dimensional to three-dimensional behavior.
Cloning of merA Gene from Methylotenera Mobilis for Mercury Biotransformation
Mercury (Hg) is one of the most toxic heavy metal and is extremely harmful for the environment. The permissible limit of mercury in industrial effluents is 0.001 ppm, whereas there are various sites having very high levels of mercury contamination. In the present study, 10 different mercury (Hg) resistant bacterial strains were isolated from Ulhas Estuary, Mumbai (Hg concentration of 107 ppm). All the strains were subsequently grown on higher concentration of mercuric chloride (HgCl 2 ), one of the isolate (USP5) showed significant growth at high concentration of Hg (40 ppm) and 16S rRNA gene sequencing revealed the identity of the bacterium as Methylotenera mobilis , (Accession no. KT714144). The mer operon was isolated and cloned in E.coli and checked for its ability to tolerate higher concentration of Hg. It has shown growth up to 70 ppm of Hg, also presence of mer A gene indicated its ability to detoxify Hg into less toxic volatile form. The atomic absorption spectrophotometry confirmed the ability of clone to efficiently detoxify 60–90 % of the Hg (10–70 ppm) within 48–72 h. This clone can be used for effective volatilization of Hg from contaminated areas.
Cloning of mer A Gene from Methylotenera Mobilis for Mercury Biotransformation
Mercury (Hg) is one of the most toxic heavy metal and is extremely harmful for the environment. The permissible limit of mercury in industrial effluents is 0.001 ppm, whereas there are various sites having very high levels of mercury contamination. In the present study, 10 different mercury (Hg) resistant bacterial strains were isolated from Ulhas Estuary, Mumbai (Hg concentration of 107 ppm). All the strains were subsequently grown on higher concentration of mercuric chloride (HgCl ), one of the isolate (USP5) showed significant growth at high concentration of Hg (40 ppm) and 16S gene sequencing revealed the identity of the bacterium as , (Accession no. KT714144). The operon was isolated and cloned in and checked for its ability to tolerate higher concentration of Hg. It has shown growth up to 70 ppm of Hg, also presence of A gene indicated its ability to detoxify Hg into less toxic volatile form. The atomic absorption spectrophotometry confirmed the ability of clone to efficiently detoxify 60-90 % of the Hg (10-70 ppm) within 48-72 h. This clone can be used for effective volatilization of Hg from contaminated areas.