Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Pröbstel, Anne-Katrin"
Sort by:
Symptomatic and restorative therapies in neuromyelitis optica spectrum disorders
by
Broadley, Simon
,
de Castillo Ibis Soto
,
Mao-Draayer, Yang
in
Brain stem
,
Cell cycle
,
Cerebrum
2022
Neuromyelitis optica spectrum disorders (NMOSD) are a group of autoimmune inflammatory conditions that primarily target the optic nerves, spinal cord, brainstem, and occasionally the cerebrum. NMOSD is characterized by recurrent attacks of visual, motor, and/or sensory dysfunction that often result in severe neurological deficits. In recent years, there has been a significant progress in relapse treatment and prevention but the residual disability per attack remains high. Although symptomatic and restorative research has been limited in NMOSD, some therapeutic approaches can be inferred from published case series and evidence from multiple sclerosis literature. In this review, we will discuss established and emerging therapeutic options for symptomatic treatment and restoration of function in NMOSD. We highlight NMOSD-specific considerations and identify potential areas for future research. The review covers pharmacologic, non-pharmacologic, and neuromodulatory approaches to neuropathic pain, tonic spasms, muscle tone abnormalities, sphincter dysfunction, motor and visual impairment, fatigue, sleep disorders, and neuropsychological symptoms. In addition, we briefly discuss remyelinating agents and mesenchymal stem cell transplantation in NMOSD.
Journal Article
B cells in autoimmune and neurodegenerative central nervous system diseases
by
Sabatino, Joseph J
,
Zamvil, Scott S
,
Pröbstel, Anne-Katrin
in
Alzheimer's disease
,
Antigen presentation
,
Autoantibodies
2019
B cells are essential components of the adaptive immune system and have important roles in the pathogenesis of several central nervous system (CNS) diseases. Besides producing antibodies, B cells perform other functions, including antigen presentation to T cells, production of proinflammatory cytokines and secretion of anti-inflammatory cytokines that limit immune responses. B cells can contribute to CNS disease either through their actions in the periphery (meaning that they have an ‘outside-in’ effect on CNS immunopathology) or following their compartmentalization within the CNS. The success of B cell-depleting therapy in patients with multiple sclerosis and CNS diseases with an autoantibody component, such as neuromyelitis optica spectrum disorder and autoimmune encephalitides, has underscored the role of B cells in both cellular and humoral-mediated CNS conditions. Emerging evidence suggests B cells also contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer disease and Parkinson disease. Advancing our understanding of the role of B cells in neuroinflammatory and neurodegenerative diseases could lead to novel therapeutic approaches.
Journal Article
Single-Cell High-Throughput Technologies in Cerebrospinal Fluid Research and Diagnostics
2019
High-throughput single-cell technologies have recently emerged as essential tools in biomedical research with great potential for clinical pathology when studying liquid and solid biopsies. We provide an update on current single-cell methods in cerebrospinal fluid research and diagnostics, focusing on high-throughput cell-type specific proteomic and genomic technologies. Proteomic methods comprising flow cytometry and mass cytometry as well as genomic approaches including immune cell repertoire and single-cell transcriptomic studies are critically reviewed and future directions discussed.
Journal Article
Multiple Sclerosis and Antibodies against KIR4.1
by
Lecourt, Anne-Catherine
,
Vock, Isabelle
,
Kuhle, Jens
in
Antibodies
,
Autoantibodies - blood
,
Biomarkers - blood
2016
On protein and peptide assays, there was no significant between-group difference in levels of antibodies against KIR4.1 protein in serum samples obtained from 141 patients with multiple sclerosis and 131 controls.
To the Editor:
Reports about preferential detection of autoantibodies against the inward-rectifying potassium channel 4.1 (KIR4.1) have raised the possibility of a breakthrough in understanding the pathophysiology of multiple sclerosis. Antibodies against either full-length KIR4.1 protein or peptide (amino acids 83 through 120) were detected by enzyme-linked immunosorbent assay (ELISA) in 47% of serum samples obtained from adults with multiple sclerosis or clinically isolated syndrome (CIS, characterized by neurologic symptoms that may be a precursor of multiple sclerosis)
1
and in an even higher proportion of pediatric patients with multiple sclerosis
2
but not in healthy controls. Subsequent independent studies that were . . .
Journal Article
Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes
by
Flammer, Julia
,
Neziraj, Tradite
,
Pröbstel, Anne-Katrin
in
Antibodies
,
Antigens
,
Autoimmune diseases
2023
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Journal Article
The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the “MS Microbiome”
2018
Multiple sclerosis (MS) is the prototypic complex disease, in which both genes and the environment contribute to its pathogenesis. To date, > 200 independent loci across the genome have been associated with MS risk. However, these only explain a fraction of the total phenotypic variance, suggesting the possible presence of additional genetic factors, and, most likely, also environmental factors. New DNA sequencing technologies have enabled the sequencing of all kinds of microorganisms, including those living in and around humans (i.e., microbiomes). The study of bacterial populations inhabiting the gut is of particular interest in autoimmune diseases owing to their key role in shaping immune responses. In this review, we address the potential crosstalk between B cells and the gut microbiota, a relevant scenario in light of recently approved anti-B-cell therapies for MS. In addition, we review recent efforts to characterize the gut microbiome in patients with MS and discuss potential challenges and future opportunities. Finally, we describe the international MS microbiome study, a multicenter effort to study a large population of patients with MS and their healthy household partners to define the core MS microbiome, how it is shaped by disease-modifying therapies, and to explore potential therapeutic interventions.
Journal Article
Myelin-oligodendrocyte glycoprotein antibody-associated disease
2021
Myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently identified autoimmune disorder that presents in both adults and children as CNS demyelination. Although there are clinical phenotypic overlaps between MOGAD, multiple sclerosis, and aquaporin-4 antibody-associated neuromyelitis optica spectrum disorder (NMOSD) cumulative biological, clinical, and pathological evidence discriminates between these conditions. Patients should not be diagnosed with multiple sclerosis or NMOSD if they have anti-MOG antibodies in their serum. However, many questions related to the clinical characterisation of MOGAD and pathogenetic role of MOG antibodies are still unanswered. Furthermore, therapy is mainly based on standard protocols for aquaporin-4 antibody-associated NMOSD and multiple sclerosis, and more evidence is needed regarding how and when to treat patients with MOGAD.
Journal Article
A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis
2020
Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood–brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein–Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype.
Journal Article
Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study
2022
Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.
Both acute and chronic COVID-19 disease (also known as long-COVID) may affect the central nervous system. Here authors characterize the immunological profile of peripheral blood and cerebrospinal fluid of COVID-19 patients in order to identify the main factors that contribute to neurological impairment and the severity of neurological symptoms in Sars-CoV-2 infection.
Journal Article