Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Item TypeItem Type
-
YearFrom:-To:
-
More FiltersMore FiltersIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
368
result(s) for
"Pradhan, Biswajeet"
Sort by:
Proceedings of UASG 2021 : wings 4 sustainability : unmanned aerial system in geomatics
by
International Conference on Unmanned Aerial System in Geomatics (2nd : 2021 : Roorkee, India)
,
Jain, Kamal, editor
,
Mishra, Vishal, editor
in
Geographic information systems Congresses.
,
Drone aircraft in remote sensing Congresses.
,
Drone aircraft Congresses.
2023
Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia
2011
Landslides are one of the most frequent and common natural hazards in Malaysia. Preparation of landslide susceptibility maps is one of the first and most important steps in the landslide hazard mitigation. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, a number of different approaches have been used, including direct and indirect heuristic approaches, deterministic, probabilistic, statistical, and data mining approaches. Moreover, these landslides can be systematically assessed and mapped through a traditional mapping framework using geoinformation technologies. Since the early 1990s, several mathematical models have been developed and applied to landslide hazard mapping using geographic information system (GIS). Among various approaches, fuzzy logic relation for mapping landslide susceptibility is one of the techniques that allows to describe the role of each predisposing factor (landslide-conditioning parameters) and their optimal combination. This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS. The possibility of capturing the judgment and the modeling of conditioning factors are the main advantages of using fuzzy logic. These models are capable to capture the conditioning factors directly affecting the landslides and also the inter-relationship among them. In the first stage of the study, a landslide inventory was complied for each of the three study areas using both field surveys and airphoto studies. Using total 12 topographic and lithological variables, landslide susceptibility models were developed using the fuzzy logic approach. Then the landslide inventory and the parameter maps were analyzed together using the fuzzy relations and the landslide susceptibility maps produced. Finally, the prediction performance of the susceptibility maps was checked by considering field-verified landslide locations in the studied areas. Further, the susceptibility maps were validated using the receiver-operating characteristics (ROC) success rate curves. The ROC curve technique is based on plotting model sensitivity—true positive fraction values calculated for different threshold values versus model specificity—true negative fraction values on a graph. The ROC curves were calculated for the landslide susceptibility maps obtained from the application and cross application of fuzzy logic relations. Qualitatively, the produced landslide susceptibility maps showed greater than 82% landslide susceptibility in all nine cases. The results indicated that, when compared with the landslide susceptibility maps, the landslides identified in the study areas were found to be located in the very high and high susceptibility zones. This shows that as far as the performance of the fuzzy logic relation approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.
Journal Article
Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI)
2021
Urban vegetation mapping is critical in many applications, i.e., preserving biodiversity, maintaining ecological balance, and minimizing the urban heat island effect. It is still challenging to extract accurate vegetation covers from aerial imagery using traditional classification approaches, because urban vegetation categories have complex spatial structures and similar spectral properties. Deep neural networks (DNNs) have shown a significant improvement in remote sensing image classification outcomes during the last few years. These methods are promising in this domain, yet unreliable for various reasons, such as the use of irrelevant descriptor features in the building of the models and lack of quality in the labeled image. Explainable AI (XAI) can help us gain insight into these limits and, as a result, adjust the training dataset and model as needed. Thus, in this work, we explain how an explanation model called Shapley additive explanations (SHAP) can be utilized for interpreting the output of the DNN model that is designed for classifying vegetation covers. We want to not only produce high-quality vegetation maps, but also rank the input parameters and select appropriate features for classification. Therefore, we test our method on vegetation mapping from aerial imagery based on spectral and textural features. Texture features can help overcome the limitations of poor spectral resolution in aerial imagery for vegetation mapping. The model was capable of obtaining an overall accuracy (OA) of 94.44% for vegetation cover mapping. The conclusions derived from SHAP plots demonstrate the high contribution of features, such as Hue, Brightness, GLCM_Dissimilarity, GLCM_Homogeneity, and GLCM_Mean to the output of the proposed model for vegetation mapping. Therefore, the study indicates that existing vegetation mapping strategies based only on spectral characteristics are insufficient to appropriately classify vegetation covers.
Journal Article
Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review
by
Pradhan, Biswajeet
,
Gite, Shilpa
,
Chakraborty, Subrata
in
Agricultural management
,
Agricultural practices
,
Agricultural production
2023
Reliable and timely crop-yield prediction and crop mapping are crucial for food security and decision making in the food industry and in agro-environmental management. The global coverage, rich spectral and spatial information and repetitive nature of remote sensing (RS) data have made them effective tools for mapping crop extent and predicting yield before harvesting. Advanced machine-learning methods, particularly deep learning (DL), can accurately represent the complex features essential for crop mapping and yield predictions by accounting for the nonlinear relationships between variables. The DL algorithm has attained remarkable success in different fields of RS and its use in crop monitoring is also increasing. Although a few reviews cover the use of DL techniques in broader RS and agricultural applications, only a small number of references are made to RS-based crop-mapping and yield-prediction studies. A few recently conducted reviews attempted to provide overviews of the applications of DL in crop-yield prediction. However, they did not cover crop mapping and did not consider some of the critical attributes that reveal the essential issues in the field. This study is one of the first in the literature to provide a thorough systematic review of the important scientific works related to state-of-the-art DL techniques and RS in crop mapping and yield estimation. This review systematically identified 90 papers from databases of peer-reviewed scientific publications and comprehensively reviewed the aspects related to the employed platforms, sensors, input features, architectures, frameworks, training data, spatial distributions of study sites, output scales, evaluation metrics and performances. The review suggests that multiple DL-based solutions using different RS data and DL architectures have been developed in recent years, thereby providing reliable solutions for crop mapping and yield prediction. However, challenges related to scarce training data, the development of effective, efficient and generalisable models and the transparency of predictions should be addressed to implement these solutions at scale for diverse locations and crops.
Journal Article
Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models
by
Pradhan, Biswajeet
,
Lee, Saro
in
Aerial photography
,
Biogeosciences
,
Earth and Environmental Science
2010
This paper summarizes findings of landslide hazard analysis on Penang Island, Malaysia, using frequency ratio, logistic regression, and artificial neural network models with the aid of GIS tools and remote sensing data. Landslide locations were identified and an inventory map was constructed by trained geomorphologists using photo-interpretation from archived aerial photographs supported by field surveys. A SPOT 5 satellite pan sharpened image acquired in January 2005 was used for land-cover classification supported by a topographic map. The above digitally processed images were subsequently combined in a GIS with ancillary data, for example topographical (slope, aspect, curvature, drainage), geological (litho types and lineaments), soil types, and normalized difference vegetation index (NDVI) data, and used to construct a spatial database using GIS and image processing. Three landslide hazard maps were constructed on the basis of landslide inventories and thematic layers, using frequency ratio, logistic regression, and artificial neural network models. Further, each thematic layer’s weight was determined by the back-propagation training method and landslide hazard indices were calculated using the trained back-propagation weights. The results of the analysis were verified and compared using the landslide location data and the accuracy observed was 86.41, 89.59, and 83.55% for frequency ratio, logistic regression, and artificial neural network models, respectively. On the basis of the higher percentages of landslide bodies predicted in very highly hazardous and highly hazardous zones, the results obtained by use of the logistic regression model were slightly more accurate than those from the other models used for landslide hazard analysis. The results from the neural network model suggest the effect of topographic slope is the highest and most important factor with weightage value (1.0), which is more than twice that of the other factors, followed by the NDVI (0.52), and then precipitation (0.42). Further, the results revealed that distance from lineament has the lowest weightage, with a value of 0. This shows that in the study area, fault lines and structural features do not contribute much to landslide triggering.
Journal Article
Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide Susceptibility Using Four State-of-the-art Metaheuristic Techniques
by
Pradhan, Biswajeet
,
Alamri, Abdullah
,
Mehrabi, Mohammad
in
Accuracy
,
anfis
,
Genetic algorithms
2020
Four state-of-the-art metaheuristic algorithms including the genetic algorithm (GA), particle swarm optimization (PSO), differential evolutionary (DE), and ant colony optimization (ACO) are applied to an adaptive neuro-fuzzy inference system (ANFIS) for spatial prediction of landslide susceptibility in Qazvin Province (Iran). To this end, the landslide inventory map, composed of 199 identified landslides, is divided into training and testing landslides with a 70:30 ratio. To create the spatial database, thirteen landslide conditioning factors are considered within the geographic information system (GIS). Notably, the spatial interaction between the landslides and mentioned conditioning factors is analyzed by means of frequency ratio (FR) theory. After the optimization process, it was shown that the DE-based model reaches the best response more quickly than other ensembles. The landslide susceptibility maps were developed, and the accuracy of the models was evaluated by a ranking system, based on the calculated area under the receiving operating characteristic curve (AUROC), mean absolute error, and mean square error (MSE) accuracy indices. According to the results, the GA-ANFIS with a total ranking score (TRS) = 24 presented the most accurate prediction, followed by PSO-ANFIS (TRS = 17), DE-ANFIS (TRS = 13), and ACO-ANFIS (TRS = 6). Due to the excellent results of this research, the developed landslide susceptibility maps can be applied for future planning and decision making of the related area.
Journal Article
Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran
by
Gokceoglu, Candan
,
Pourghasemi, Hamid Reza
,
Pradhan, Biswajeet
in
Aerial photography
,
Civil Engineering
,
Earth and Environmental Science
2012
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70 % (55 landslides) for training the models and the remaining 30 % (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7 %) performed better than AHP (81.1 %) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.
Journal Article
Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method
by
Pradhan, Biswajeet
,
Jebur, Mustafa Neamah
,
Tehrany, Mahyat Shafapour
in
Aquatic Pollution
,
Assessments
,
Chemistry and Earth Sciences
2015
Flood is one of the most commonly occurred natural hazards worldwide. Severe flood occurrences in Kelantan, Malaysia cause damage to both life and property every year. Due to the huge losses in this area, development of appropriate flood modeling is required for the government. Remote sensing and geographic information system techniques can support overall flood management as they can produce rapid data collection and analysis for hydrological studies. The existing models for flood mapping have some weak points that may improve through more sophisticated and ensemble methods. The current research aimed to propose a novel ensemble method by integrating support vector machine (SVM) and frequency ratio (FR) to produce spatial modeling in flood susceptibility assessment. In the literature, mostly statistical and machine learning methods are used individually; however, their integration can enhance the final output. The FR model can perform bivariate statistical analysis and evaluate the correlation between the flooding and classes of each conditioning factors. The weights achieved by FR can be assigned to each conditioning factor and the resulted factors can be used in SVM analysis. In order to examine the efficiency of the proposed ensemble method and to show the proficiency of SVM, another machine learning algorithm such as decision tree (DT) was applied and the results were compared. To perform the methods, the upper catchment of the Kelantan basin in Malaysia was chosen. First, a flood inventory map with a total of 155 flood locations were extracted from various sources over the study area. The flood inventory map was randomly divided into two dataset; 70 % (115 flood locations) for the purpose of training and the remaining 30 % (40 flood locations) was used for validation. The spatial database included digital elevation model, curvature, geology, river, stream power index, rainfall, land use/cover, soil type, topographic wetness index and slope. For model validation, area under curve method was used and both success and prediction rate curves were calculated. The validation results for ensemble method showed 88.71 and 85.21 % for success rate and prediction rate respectively. The DT model showed 87.00 and 82.00 % for the success rate and prediction rate respectively. It is evident that the accuracies were increased using the ensemble method. The acquired results proved the efficiency of the proposed ensemble method as rapid, accurate and reasonable in flood susceptibility assessment.
Journal Article
Earthquake-Induced Building-Damage Mapping Using Explainable AI (XAI)
by
Pradhan, Biswajeet
,
Matin, Sahar S.
in
building-damage mapping
,
explainable AI
,
feature analysis
2021
Building-damage mapping using remote sensing images plays a critical role in providing quick and accurate information for the first responders after major earthquakes. In recent years, there has been an increasing interest in generating post-earthquake building-damage maps automatically using different artificial intelligence (AI)-based frameworks. These frameworks in this domain are promising, yet not reliable for several reasons, including but not limited to the site-specific design of the methods, the lack of transparency in the AI-model, the lack of quality in the labelled image, and the use of irrelevant descriptor features in building the AI-model. Using explainable AI (XAI) can lead us to gain insight into identifying these limitations and therefore, to modify the training dataset and the model accordingly. This paper proposes the use of SHAP (Shapley additive explanation) to interpret the outputs of a multilayer perceptron (MLP)—a machine learning model—and analyse the impact of each feature descriptor included in the model for building-damage assessment to examine the reliability of the model. In this study, a post-event satellite image from the 2018 Palu earthquake was used. The results show that MLP can classify the collapsed and non-collapsed buildings with an overall accuracy of 84% after removing the redundant features. Further, spectral features are found to be more important than texture features in distinguishing the collapsed and non-collapsed buildings. Finally, we argue that constructing an explainable model would help to understand the model’s decision to classify the buildings as collapsed and non-collapsed and open avenues to build a transferable AI model.
Journal Article
Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques
2009
This paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.
Journal Article