Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Priest, Craig"
Sort by:
Photometric Sensing of Active Chlorine, Total Chlorine, and pH on a Microfluidic Chip for Online Swimming Pool Monitoring
A microfluidic sensor was studied for the photometric detection of active chlorine, total chlorine, and pH in swimming pool samples. The sensor consisted of a four-layer borosilicate glass chip, containing a microchannel network and a 2.2 mm path length, 1.7 mL optical cell. The chip was optimised to measure the bleaching of methyl orange and spectral changes in phenol red for quantitative chlorine (active and total) and pH measurements that were suited to swimming pool monitoring. Reagent consumption (60 mL per measurement) was minimised to allow for maintenance-free operation over a nominal summer season (3 months) with minimal waste. The chip was tested using samples from 12 domestic, public, and commercial swimming pools (indoor and outdoor), with results that compare favourably with commercial products (test strips and the N,N’-diethyl-p-phenylenediamine (DPD) method), precision pH electrodes, and iodometric titration.
The Timing of Application and Inclusion of a Surfactant Are Important for Absorption and Translocation of Foliar Phosphoric Acid by Wheat Leaves
Foliar applied phosphorus (P) has the potential to provide a more tactical approach to P fertilization that could enhance P use efficiency. The aims of this study were to investigate the influence of adjuvant choice and application timing of foliar applied phosphoric acid on leaf wettability, foliar uptake, translocation, and grain yield of wheat plants. We measured the contact angles of water and fertilizers on wheat leaves, and the uptake, translocation and wheat yield response to isotopically-labelled phosphoric acid in combination with five different adjuvants when foliar-applied to wheat at either early tillering or flag leaf emergence. There was high foliar uptake of phosphoric acid in combination with all adjuvants that contained a surfactant, but only one treatment resulted in a 12% increase in grain yield and two treatments resulted in a decrease in grain yield. Despite the wettability of all foliar fertilizers being markedly different, foliar uptake was similar for all treatments that contained a surfactant. The translocation of phosphorus from foliar sources was higher when applied at a later growth stage than when applied at tillering despite the leaf surface properties that affect wettability being similar across all leaves at both growth stages. Both the timing of foliar application and the inclusion of a surfactant in the formulation are important for absorption and translocation of phosphoric acid by wheat leaves, however high foliar uptake and translocation will not always translate to a yield increase.
Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics
The rapid development of optofluidic technologies in recent years has seen the need for sensing platforms with ease-of-use, simple sample manipulation, and high performance and sensitivity. Herein, an integrated optofluidic sensor consisting of a pillar array-based open microfluidic chip and caged dye-doped whispering gallery mode microspheres is demonstrated and shown to have potential for simple real-time monitoring of liquids. The open microfluidic chip allows for the wicking of a thin film of liquid across an open surface with subsequent evaporation-driven flow enabling continuous passive flow for sampling. The active dye-doped whispering gallery mode microspheres placed between pillars, avoid the use of cumbersome fibre tapers to couple light to the resonators as is required for passive microspheres. The performance of this integrated sensor is demonstrated using glucose solutions (0.05–0.3 g/mL) and the sensor response is shown to be dynamic and reversible. The sensor achieves a refractive index sensitivity of ~40 nm/RIU, with Q-factors of ~5 × 103 indicating a detection limit of ~3 × 10−3 RIU (~20 mg/mL glucose). Further enhancement of the detection limit is expected by increasing the microsphere Q-factor using high-index materials for the resonators, or alternatively, inducing lasing. The integrated sensors are expected to have significant potential for a host of downstream applications, particularly relating to point-of-care diagnostics.
Rapid Fabrication of Superhydrophobic Virtual Walls for Microfluidic Gas Extraction and Sensing
Based on the virtual walls concept, where fluids are guided by wettability, we demonstrate the application of a gas phase extraction microfluidic chip. Unlike in previous work, the chip is prepared using a simple, rapid, and low-cost fabrication method. Channels were cut into double-sided adhesive tape (280 µm thick) and bonded to hydrophilic glass slides. The tape was selectively made superhydrophobic by ‘dusting’ with hydrophobic silica gel to enhance the wettability contrast at the virtual walls. Finally, the two glass slides were bonded using tape, which acts as a spacer for gas transport from/to the guided liquids. In our example, the virtual walls create a stable liquid–vapor–liquid flow configuration for the extraction of a volatile analyte (ammonia), from one liquid stream to the other through the intermediate vapor phase. The collector stream contained a pH indicator to visualize the mass transport. Quantitative analysis of ammonium hydroxide in the sample stream (<1 mM) was possible using a characteristic onset time, where the first pH change in the collector stream was detected. The effect of gap length, flow rates, and pH of the collector stream on the onset time is demonstrated. Finally, we demonstrate the analysis of ammonium hydroxide in artificial human saliva to show that the virtual walls chip is suitable for extracting volatile analytes from biofluids.
The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy
The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores.
The Use of Microfluidics in Cytotoxicity and Nanotoxicity Experiments
Many unique chemical compounds and nanomaterials are being developed, and each one requires a considerable range of in vitro and/or in vivo toxicity screening in order to evaluate their safety. The current methodology of in vitro toxicological screening on cells is based on well-plate assays that require time-consuming manual handling or expensive automation to gather enough meaningful toxicology data. Cost reduction; access to faster, more comprehensive toxicity data; and a robust platform capable of quantitative testing, will be essential in evaluating the safety of new chemicals and nanomaterials, and, at the same time, in securing the confidence of regulators and end-users. Microfluidic chips offer an alternative platform for toxicity screening that has the potential to transform both the rates and efficiency of nanomaterial testing, as reviewed here. The inherent advantages of microfluidic technologies offer high-throughput screening with small volumes of analytes, parallel analyses, and low-cost fabrication.
Injection moulding of micropillar arrays: a comparison of poly(methyl methacrylate) and cyclic olefin copolymer
Injection moulding of micropillar arrays offers a fast and inexpensive method for manufacturing sensors, optics, lab-on-a-chip devices, and medical devices. Material choice is important for both the function of the device and manufacturing optimisation. Here, a comparative study of poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC) injection moulding of micropillar arrays is presented. These two polymers are chosen for their convenient physical, chemical, and optical properties, which are favoured for microfluidic devices. COC is shown to replicate the mould’s nano/microstructures more precisely than PMMA. COC successfully forms a micropillar array (250 mm diameter; 496 mm high) and closely replicates surfaces with nano-scale roughness (30–120 nm). In the same moulds, PMMA forms lens arrays (not true pillars) and smoother surfaces due to the incomplete filling for all parameters studied. Thus, COC offers finer structural detail for devices that require micro and nano-structured features, and may be more suited to injection moulding microfluidic devices.
Intracellular delivery of mRNA to human primary T cells with microfluidic vortex shedding
Intracellular delivery of functional macromolecules, such as DNA and RNA, across the cell membrane and into the cytosol, is a critical process in both biology and medicine. Herein, we develop and use microfluidic chips containing post arrays to induce microfluidic vortex shedding , or μVS , for cell membrane poration that permits delivery of mRNA into primary human T lymphocytes. We demonstrate transfection with μVS by delivery of a 996-nucleotide mRNA construct encoding enhanced green fluorescent protein (EGFP) and assessed transfection efficiencies by quantifying levels of EGFP protein expression. We achieved high transfection efficiency (63.6 ± 3.44% EGFP + viable cells) with high cell viability (77.3 ± 0.58%) and recovery (88.7 ± 3.21%) in CD3 + T cells 19 hrs after μVS processing. Importantly, we show that processing cells via μVS does not negatively affect cell growth rates or alter cell states. We also demonstrate processing speeds of greater than 2.0 × 10 6 cells s −1 at volumes ranging from 0.1 to 1.5 milliliters. Altogether, these results highlight the use of μVS as a rapid and gentle delivery method with promising potential to engineer primary human cells for research and clinical applications.
Analysis of co-flowing immiscible liquid streams and their interfaces in a high-throughput solvent extraction chip
Liquid–liquid flow profiles are central to the operation of microfluidic devices in a range of applications. We recently demonstrated a multi-stream solvent extraction (SX) chip that combines high-surface-to-volume ratios and volumetric throughput. Here, we study these flow profiles in detail using numerical simulations, with consideration of different boundary conditions. The two liquids differ in viscosity, modelled on platinum (aqueous) and extractant (organic) phases, and the position of the liquid–liquid interfaces (and therefore surface/volume and phase ratios) can be controlled by adjustment of flow rates. The prediction of the position of the interface requires the solution of the governing equations of fluid mechanics. The volume of fluid (VOF) method was used to simulate the dynamics of the organic and aqueous phases to reveal stable flow profiles. This experimentally validated computational model with the root-mean-square deviation of about 11 µm will be useful for simulation of microfluidic SX design and operation, particularly where process intensification is sought through scale-out.Graphic abstract
A quantitative experimental study of wetting hysteresis on discrete and continuous chemical heterogeneities
Chemically heterogeneous surfaces are well known to induce contact angle hysteresis due to the local energy barriers that oppose contact line movement. In many cases, the surface heterogeneity is discontinuous, i.e. discrete regions of different wettability exist, which leads to pinning of the contact line at boundaries between regions. Pinning on individual rows of microscopic defects arranged in a square lattice can be sensed using a Wilhelmy balance to reveal discrete stick-slip motion. For defects more wettable than the matrix with a lattice spacing of 28 μm, the advancing contact line slips over ∼10 rows in a single slip step, while the receding contact line stick-slips between individual rows of defects. Single, millimetre-scale defects were used to assess the energy involved when a contact line advances or recedes over a hydrophilic (more wettable) defect. Quantitative information about defect-induced hysteresis in relation to defect dimensions is obtained. The crucial importance of wetting boundaries is highlighted with an experimental example of a surface that is heterogeneous yet, due to the continuously changing pattern, does not exhibit contact angle hysteresis.