Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
111 result(s) for "Prinn, Ronald"
Sort by:
Development and application of earth system models
The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.
Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies
The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past 2 decades, primarily as a result of the phaseout of ozone-depleting substances under the Montreal Protocol and the use of HFCs as their replacements. In 2015, large increases were projected in HFC use and emissions in this century in the absence of regulations, contributing up to 0.5 ∘C to global surface warming by 2100. In 2019, the Kigali Amendment to the Montreal Protocol came into force with the goal of limiting the use of HFCs globally, and currently, regulations to limit the use of HFCs are in effect in several countries. Here, we analyze trends in HFC emissions inferred from observations of atmospheric abundances and compare them with previous projections. Total CO2 eq. inferred HFC emissions continue to increase through 2019 (to about 0.8 GtCO2eq.yr-1) but are about 20 % lower than previously projected for 2017–2019, mainly because of the lower global emissions of HFC-143a. This indicates that HFCs are used much less in industrial and commercial refrigeration (ICR) applications than previously projected. This is supported by data reported by the developed countries and the lower reported consumption of HFC-143a in China. Because this time period preceded the beginning of the Kigali provisions, this reduction cannot be linked directly to the provisions of the Kigali Amendment. However, it could indicate that companies transitioned away from the HFC-143a with its high global warming potential (GWP) for ICR applications in anticipation of national or global mandates. There are two new HFC scenarios developed based (1) on current trends in HFC use and Kigali-independent (K-I) control policies currently existing in several countries and (2) current HFC trends and compliance with the Kigali Amendment (KA-2022). These current policies reduce projected emissions in 2050 from the previously calculated 4.0–5.3 GtCO2eq.yr-1 to 1.9–3.6 GtCO2eq.yr-1. The added provisions of the Kigali Amendment are projected to reduce the emissions further to 0.9–1.0 GtCO2eq.yr-1 in 2050. Without any controls, projections suggest a HFC contribution of 0.28–0.44 ∘C to global surface warming by 2100, compared to a temperature contribution of 0.14–0.31 ∘C that is projected considering the national K-I policies current in place. Warming from HFCs is additionally limited by the Kigali Amendment controls to a contribution of about 0.04 ∘C by 2100.
Role of atmospheric oxidation in recent methane growth
The growth in global methane (CH₄) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH₄ sink, in the recent CH₄ growth. We also examine the influence of systematic uncertainties in OH concentrations on CH₄ emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH₃CCl₃), which is lost primarily through reaction with OH, to estimate OH levels as well as CH₃CCl₃ emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64–70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH₄ emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH₄ emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH₄/12CH₄ ratio and the recent growth in C₂H₆. Our approach indicates that significant OH-related uncertainties in the CH₄ budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH₄ emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.
Sustained growth of sulfur hexafluoride emissions in China inferred from atmospheric observations
Sulfur hexafluoride (SF 6 ) is a potent greenhouse gas. Here we use long-term atmospheric observations to determine SF 6 emissions from China between 2011 and 2021, which are used to evaluate the Chinese national SF 6 emission inventory and to better understand the global SF 6 budget. SF 6 emissions in China substantially increased from 2.6 (2.3-2.7, 68% uncertainty) Gg yr −1 in 2011 to 5.1 (4.8-5.4) Gg yr −1 in 2021. The increase from China is larger than the global total emissions rise, implying that it has offset falling emissions from other countries. Emissions in the less-populated western regions of China, which have potentially not been well quantified in previous measurement-based estimates, contribute significantly to the national SF 6 emissions, likely due to substantial power generation and transmission in that area. The CO 2 -eq emissions of SF 6 in China in 2021 were 125 (117-132) million tonnes (Mt), comparable to the national total CO 2 emissions of several countries such as the Netherlands or Nigeria. The increasing SF 6 emissions offset some of the CO 2 reductions achieved through transitioning to renewable energy in the power industry, and might hinder progress towards achieving China’s goal of carbon neutrality by 2060 if no concrete control measures are implemented. Atmospheric measurements show that China’s emissions of the potent greenhouse gas, sulfur hexafluoride, grew rapidly between 2011 and 2021. This rise could offset some of China’s progress towards its greenhouse gas emission reduction goal.
A decline in emissions of CFC-11 and related chemicals from eastern China
Emissions of ozone-depleting substances, including trichlorofluoromethane (CFC-11), have decreased since the mid-1980s in response to the Montreal Protocol 1 , 2 . In recent years, an unexpected increase in CFC-11 emissions beginning in 2013 has been reported, with much of the global rise attributed to emissions from eastern China 3 , 4 . Here we use high-frequency atmospheric mole fraction observations from Gosan, South Korea and Hateruma, Japan, together with atmospheric chemical transport-model simulations, to investigate regional CFC-11 emissions from eastern China. We find that CFC-11 emissions returned to pre-2013 levels in 2019 (5.0 ± 1.0 gigagrams per year in 2019, compared to 7.2 ± 1.5 gigagrams per year for 2008–2012, ±1 standard deviation), decreasing by 10 ± 3 gigagrams per year since 2014–2017. Furthermore, we find that in this region, carbon tetrachloride (CCl 4 ) and dichlorodifluoromethane (CFC-12) emissions—potentially associated with CFC-11 production—were higher than expected after 2013 and then declined one to two years before the CFC-11 emissions reduction. This suggests that CFC-11 production occurred in eastern China after the mandated global phase-out, and that there was a subsequent decline in production during 2017–2018. We estimate that the amount of the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) in eastern China is up to 112 gigagrams larger in 2019 compared to pre-2013 levels, probably as a result of recent production. Nevertheless, it seems that any substantial delay in ozone-layer recovery has been avoided, perhaps owing to timely reporting 3 , 4 and subsequent action by industry and government in China 5 , 6 . Atmospheric data and chemical-transport modelling show that CFC-11 emissions from eastern China have again decreased, after increasing in 2013–2017, and a delay in ozone-layer recovery has probably been avoided.
Rapid increase in dichloromethane emissions from China inferred through atmospheric observations
With the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH 2 Cl 2 ). The emissions grew from 231 (213–245) Gg yr −1 in 2011 to 628 (599–658) Gg yr −1 in 2019, with an average annual increase of 13 (12–15) %, primarily from eastern China. The overall increase in CH 2 Cl 2 emissions from China has the same magnitude as the global emission rise of 354 (281−427) Gg yr −1 over the same period. If global CH 2 Cl 2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH 2 Cl 2 emissions. Dichloromethane (CH 2 Cl 2 ) is an unregulated ozone depleting substance whose emissions have strongly increased in recent years. Here, the authors show that rising emissions of dichloromethane in China between 2011 and 2019 can explain much of this global increase.
On the Influence of Hydroxyl Radical Changes and Ocean Sinks on Estimated HCFC and HFC Emissions and Banks
Hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are potent greenhouse gases regulated under the Montreal Protocol and its amendments. Emission estimates generally use constant atmospheric lifetimes accounting for loss via hydroxyl radical (OH) reactions. However, chemistry‐climate models suggest OH increases after 1980, implying underestimated emissions. Further, HCFCs and HFCs are soluble in seawater and could be destroyed through in situ oceanic microbial activity. These ocean sinks are largely overlooked. Using a coupled atmosphere‐ocean model, we show that increases in modeled OH imply underestimated HCFC and HFC emissions by ∼10% near their respective peak emissions. Our model results also suggest that oceanic processes could lead to up to an additional 10% underestimation in these halocarbon emissions in the 2020s. Ensuring global compliance to the Protocol and accurate knowledge of contributions to global warming from these gases therefore requires understanding of these processes. Plain Language Summary Man‐made hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) contribute to global warming, prompting worldwide agreement to control the production of these chemicals. It is important to estimate their emissions to ensure global compliance with the agreed phaseout. But correct emission estimation requires knowledge of different loss pathways. One major loss pathway of halocarbons is through chemical reactions with the atmospheric “scrubber” called OH. OH is difficult to measure and usually assumed to be constant with time. But some models suggest OH has increased, which implies increased emissions to match observed abundances. These halocarbons also dissolve into the oceans, where microbes may also metabolize them, but these processes are not included in current emission estimates. We show that if these halocarbons are being consumed in the oceans, this would also lead to an additional underestimation of human emissions. Confidence in the success in the Montreal Protocol and its Kigali amendment to reduce HFCs will therefore require a better understanding of both OH trends and ocean sinks, along with use of HFC and HCFC measurements. Key Points Increasing OH suggested by Coupled Model Intercomparison Project Phase 6 models can lead to a 5%–7% underestimation in hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) emission estimations in 2005 If there is significant ocean degradation through microbial activity, HCFC, and HFC emissions could be underestimated by up to 10% Our study suggests an uncertainty in the combined contribution to global warming from HCFCs and HFCs up to 15%–20% in the 2020s
Challenges for the recovery of the ozone layer
The recovery of stratospheric ozone from past depletion is underway owing to the 1987 Montreal Protocol and its subsequent amendments, which have been effective in phasing out the production and consumption of the major ozone-depleting substances (ODSs). However, there is uncertainty about the future rate of recovery. This uncertainty relates partly to unexpected emissions of controlled anthropogenic ODSs such as CCl3F and slower-than-expected declines in atmospheric CCl4. A further uncertainty surrounds emissions of uncontrolled short-lived anthropogenic ODSs (such as CH2Cl2 and CHCl3), which observations show have been increasing in the atmosphere through 2017, as well as potential emission increases in natural ODSs (such as CH3Cl and CH3Br) induced by climate change, changes in atmospheric concentrations of greenhouse gases N2O and CH4, and stratospheric geoengineering. These challenges could delay the return of stratospheric ozone levels to historical values, (for example, the abundance in 1980), by up to decades, depending on the future evolution of the emissions and other influencing factors. To mitigate the threats to future ozone recovery, it is crucial to ensure that the Montreal Protocol and its amendments continue to be implemented effectively in order to have firm control on future levels of ODSs. This action needs to be supported by an expansion of the geographic coverage of atmospheric observations of ODSs, by enhancing the ability of source attribution modelling, and by improving understanding of the interactions between climate change and ozone recovery.
Rapid increase in ozone-depleting chloroform emissions from China
Chloroform contributes to the depletion of the stratospheric ozone layer. However, due to its short lifetime and predominantly natural sources, it is not included in the Montreal Protocol that regulates the production and uses of ozone-depleting substances. Atmospheric chloroform mole fractions were relatively stable or slowly decreased during 1990–2010. Here we show that global chloroform mole fractions increased after 2010, based on in situ chloroform measurements at seven stations around the world. We estimate that the global chloroform emissions grew at the rate of 3.5% yr−1 between 2010 and 2015 based on atmospheric model simulations. We used two regional inverse modelling approaches, combined with observations from East Asia, to show that emissions from eastern China grew by 49 (41–59) Gg between 2010 and 2015, a change that could explain the entire increase in global emissions. We suggest that if chloroform emissions continuously grow at the current rate, the recovery of the stratospheric ozone layer above Antarctica could be delayed by several years.
CCl4 emissions in eastern China during 2021–2022 and exploration of potential new sources
According to the Montreal Protocol, the production and consumption of ozone-layer-depleting CCl 4 for dispersive applications was globally phased out by 2010, including China. However, continued CCl 4 emissions were disclosed, with the latest CCl 4 emissions unknown in eastern China. In the current study, based on the atmospheric measurements of ~12,000 air samples taken at two sites in eastern China, the 2021–2022 CCl 4 emissions are quantified as 7.6 ± 1.7 gigagrams per year. This finding indicates that CCl 4 emissions continued after being phased out for dispersive uses in 2010. Subsequently, our study identifies potential industrial sources (manufacture of general purpose machinery and manufacture of raw chemical materials, and chemical products) of CCl 4 emissions. The Montreal Protocol globally phased out ozone-layer depleting CCl 4 by 2010. However, atmospheric measurements show eastern China emitted ~7.6 gigagrams/year in 2021–2022. Further, industrial sources of ongoing CCL 4 emissions are identified.