Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
54
result(s) for
"Privitera Filippo"
Sort by:
Living in a pandemic: changes in mobility routines, social activity and adherence to COVID-19 protective measures
by
Lucchini, Lorenzo
,
Centellegher, Simone
,
Pappalardo, Luca
in
639/705/1042
,
692/700/478
,
Coronaviruses
2021
Non-Pharmaceutical Interventions (NPIs), aimed at reducing the diffusion of the COVID-19 pandemic, have dramatically influenced our everyday behaviour. In this work, we study how individuals adapted their daily movements and person-to-person contact patterns over time in response to the NPIs. We leverage longitudinal GPS mobility data of hundreds of thousands of anonymous individuals to empirically show and quantify the dramatic disruption in people’s mobility habits and social behaviour. We find that local interventions did not just impact the number of visits to different venues but also how people experience them. Individuals spend less time in venues, preferring simpler and more predictable routines, also reducing person-to-person contacts. Moreover, we find that the individual patterns of visits are influenced by the strength of the NPIs policies, the local severity of the pandemic and a risk adaptation factor, which increases the people’s mobility regardless of the stringency of interventions. Finally, despite the gradual recovery in visit patterns, we find that individuals continue to keep person-to-person contacts low. This apparent conflict hints that the evolution of policy adherence should be carefully addressed by policymakers, epidemiologists and mobility experts.
Journal Article
COVID-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown
2020
Italy has been severely affected by the COVID-19 pandemic, reporting the highest death toll in Europe as of April 2020. Following the identification of the first infections, on February 21, 2020, national authorities have put in place an increasing number of restrictions aimed at containing the outbreak and delaying the epidemic peak. On March 12, the government imposed a national lockdown. To aid the evaluation of the impact of interventions, we present daily time-series of three different aggregated mobility metrics: the origin-destination movements between Italian provinces, the radius of gyration, and the average degree of a spatial proximity network. All metrics were computed by processing a large-scale dataset of anonymously shared positions of about 170,000 de-identified smartphone users before and during the outbreak, at the sub-national scale. This dataset can help to monitor the impact of the lockdown on the epidemic trajectory and inform future public health decision making.Measurement(s)mobilityTechnology Type(s)GPS navigation systemFactor Type(s)temporal intervalSample Characteristic - OrganismHomo sapiensSample Characteristic - LocationItalyMachine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12515256
Journal Article
Spatial immunization to abate disease spreading in transportation hubs
by
Colet, Pere
,
Gallotti, Riccardo
,
Ramasco, José J.
in
639/705/1041
,
639/766/530/2801
,
692/700/478/174
2023
Proximity social interactions are crucial for infectious diseases transmission. Crowded agglomerations pose serious risk of triggering superspreading events. Locations like transportation hubs (airports and stations) are designed to optimize logistic efficiency, not to reduce crowding, and are characterized by a constant in and out flow of people. Here, we analyze the paradigmatic example of London Heathrow, one of the busiest European airports. Thanks to a dataset of anonymized individuals’ trajectories, we can model the spreading of different diseases to localize the contagion hotspots and to propose a spatial immunization policy targeting them to reduce disease spreading risk. We also detect the most vulnerable destinations to contagions produced at the airport and quantify the benefits of the spatial immunization technique to prevent regional and global disease diffusion. This method is immediately generalizable to train, metro and bus stations and to other facilities such as commercial or convention centers.
Efficient spatial targeting of interventions could reduce the spread of infections in transportation hubs. Here, the authors assess the optimal locations to target in Heathrow airport using disease transmission models informed by a contact network based on anonymised location data from 200,000 individuals.
Journal Article
Characterizing collective physical distancing in the U.S. during the first nine months of the COVID-19 pandemic
by
Kraemer, Moritz U. G.
,
LaRock, Timothy
,
Chinazzi, Matteo
in
Biology and Life Sciences
,
Cellular telephones
,
Censuses
2024
The COVID-19 pandemic offers an unprecedented natural experiment providing insights into the emergence of collective behavioral changes of both exogenous (government mandated) and endogenous (spontaneous reaction to infection risks) origin. Here, we characterize collective physical distancing—mobility reductions, minimization of contacts, shortening of contact duration—in response to the COVID-19 pandemic in the pre-vaccine era by analyzing de-identified, privacy-preserving location data for a panel of over 5.5 million anonymized, opted-in U.S. devices. We define five indicators of users’ mobility and proximity to investigate how the emerging collective behavior deviates from typical pre-pandemic patterns during the first nine months of the COVID-19 pandemic. We analyze both the dramatic changes due to the government mandated mitigation policies and the more spontaneous societal adaptation into a new (physically distanced) normal in the fall 2020. Using the indicators here defined we show that: a) during the COVID-19 pandemic, collective physical distancing displayed different phases and was heterogeneous across geographies, b) metropolitan areas displayed stronger reductions in mobility and contacts than rural areas; c) stronger reductions in commuting patterns are observed in geographical areas with a higher share of teleworkable jobs; d) commuting volumes during and after the lockdown period negatively correlate with unemployment rates; and e) increases in contact indicators correlate with future values of new deaths at a lag consistent with epidemiological parameters and surveillance reporting delays. In conclusion, this study demonstrates that the framework and indicators here presented can be used to analyze large-scale social distancing phenomena, paving the way for their use in future pandemics to analyze and monitor the effects of pandemic mitigation plans at the national and international levels.
Journal Article
COVID-19 is linked to changes in the time–space dimension of human mobility
by
Barbosa, Hugo
,
Santana, Clodomir
,
Botta, Federico
in
639/766/530/2801
,
706/689/680
,
Behavioral Sciences
2023
Socio-economic constructs and urban topology are crucial drivers of human mobility patterns. During the coronavirus disease 2019 pandemic, these patterns were reshaped in their components: the spatial dimension represented by the daily travelled distance, and the temporal dimension expressed as the synchronization time of commuting routines. Here, leveraging location-based data from de-identified mobile phone users, we observed that, during lockdowns restrictions, the decrease of spatial mobility is interwoven with the emergence of asynchronous mobility dynamics. The lifting of restriction in urban mobility allowed a faster recovery of the spatial dimension compared with the temporal one. Moreover, the recovery in mobility was different depending on urbanization levels and economic stratification. In rural and low-income areas, the spatial mobility dimension suffered a more considerable disruption when compared with urbanized and high-income areas. In contrast, the temporal dimension was more affected in urbanized and high-income areas than in rural and low-income areas.
Studying human mobility during the coronavirus disease 2019 pandemic, the authors observe asynchronous temporal dynamics of people’s movements and compare this with spatial mobility changes.
Journal Article
COVID-19 is linked to changes in the time-space dimension of human mobility
2023
Socio-economic constructs and urban topology are crucial drivers of human mobility patterns. During the coronavirus disease 2019 pandemic, these patterns were reshaped in their components: the spatial dimension represented by the daily travelled distance, and the temporal dimension expressed as the synchronization time of commuting routines. Here, leveraging location-based data from de-identified mobile phone users, we observed that, during lockdowns restrictions, the decrease of spatial mobility is interwoven with the emergence of asynchronous mobility dynamics. The lifting of restriction in urban mobility allowed a faster recovery of the spatial dimension compared with the temporal one. Moreover, the recovery in mobility was different depending on urbanization levels and economic stratification. In rural and low-income areas, the spatial mobility dimension suffered a more considerable disruption when compared with urbanized and high-income areas. In contrast, the temporal dimension was more affected in urbanized and high-income areas than in rural and low-income areas.
Multiple-level Point Embedding for Solving Human Trajectory Imputation with Prediction
2023
Sparsity is a common issue in many trajectory datasets, including human mobility data. This issue frequently brings more difficulty to relevant learning tasks, such as trajectory imputation and prediction. Nowadays, little existing work simultaneously deals with imputation and prediction on human trajectories. This work plans to explore whether the learning process of imputation and prediction could benefit from each other to achieve better outcomes. And the question will be answered by studying the coexistence patterns between missing points and observed ones in incomplete trajectories. More specifically, the proposed model develops an imputation component based on the self-attention mechanism to capture the coexistence patterns between observations and missing points among encoder-decoder layers. Meanwhile, a recurrent unit is integrated to extract the sequential embeddings from newly imputed sequences for predicting the following location. Furthermore, a new implementation called Imputation Cycle is introduced to enable gradual imputation with prediction enhancement at multiple levels, which helps to accelerate the speed of convergence. The experimental results on three different real-world mobility datasets show that the proposed approach has significant advantages over the competitive baselines across both imputation and prediction tasks in terms of accuracy and stability.
Living in a pandemic: adaptation of individual mobility and social activity in the US
by
Lucchini, Lorenzo
,
Centellegher, Simone
,
Pappalardo, Luca
in
Adaptation
,
Coronaviruses
,
COVID-19
2021
The non-pharmaceutical interventions (NPIs), aimed at reducing the diffusion of the COVID-19 pandemic, has dramatically influenced our behaviour in everyday life. In this work, we study how individuals adapted their daily movements and person-to-person contact patterns over time in response to the COVID-19 pandemic and the NPIs. We leverage longitudinal GPS mobility data of hundreds of thousands of anonymous individuals in four US states and empirically show the dramatic disruption in people's life. We find that local interventions did not just impact the number of visits to different venues but also how people experience them. Individuals spend less time in venues, preferring simpler and more predictable routines and reducing person-to-person contact activities. Moreover, we show that the stringency of interventions alone does explain the number and duration of visits to venues: individual patterns of visits seem to be influenced by the local severity of the pandemic and a risk adaptation factor, which increases the people's mobility regardless of the stringency of interventions.
Characterizing collective physical distancing in the U.S. during the first nine months of the COVID-19 pandemic
by
LaRock, Timothy
,
Chinazzi, Matteo
,
Friedland, Lisa
in
Coronaviruses
,
COVID-19
,
Disease control
2022
The COVID-19 pandemic offers an unprecedented natural experiment providing insights into the emergence of collective behavioral changes of both exogenous (government mandated) and endogenous (spontaneous reaction to infection risks) origin. Here, we characterize collective physical distancing -- mobility reductions, minimization of contacts, shortening of contact duration -- in response to the COVID-19 pandemic in the pre-vaccine era by analyzing de-identified, privacy-preserving location data for a panel of over 5.5 million anonymized, opted-in U.S. devices. We define five indicators of users' mobility and proximity to investigate how the emerging collective behavior deviates from the typical pre-pandemic patterns during the first nine months of the COVID-19 pandemic. We analyze both the dramatic changes due to the government mandated mitigation policies and the more spontaneous societal adaptation into a new (physically distanced) normal in the fall 2020. The indicators defined here allow the quantification of behavior changes across the rural/urban divide and highlight the statistical association of mobility and proximity indicators with metrics characterizing the pandemic's social and public health impact such as unemployment and deaths. This study provides a framework to study massive social distancing phenomena with potential uses in analyzing and monitoring the effects of pandemic mitigation plans at the national and international level.