Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Procter, Simon R."
Sort by:
Maternal immunisation against Group B Streptococcus: A global analysis of health impact and cost-effectiveness
2023
Group B Streptococcus (GBS) can cause invasive disease (iGBS) in young infants, typically presenting as sepsis or meningitis, and is also associated with stillbirth and preterm birth. GBS vaccines are under development, but their potential health impact and cost-effectiveness have not been assessed globally.
We assessed the health impact and value (using net monetary benefit (NMB), which measures both health and economic effects of vaccination into monetary units) of GBS maternal vaccination in an annual cohort of 140 million pregnant women across 183 countries in 2020. Our analysis uses a decision tree model, incorporating risks of GBS-related health outcomes from an existing Bayesian disease burden model. We extrapolated country-specific GBS-related healthcare costs using data from a previous systematic review and calculated quality-adjusted life years (QALYs) lost due to infant mortality and long-term disability. We assumed 80% vaccine efficacy against iGBS and stillbirth, following the WHO Preferred Product Characteristics, and coverage based on the proportion of pregnant women receiving at least 4 antenatal visits. One dose was assumed to cost $50 in high-income countries, $15 in upper-middle income countries, and $3.50 in low-/lower-middle-income countries. We estimated NMB using alternative normative assumptions that may be adopted by policymakers. Vaccinating pregnant women could avert 127,000 (95% uncertainty range 63,300 to 248,000) early-onset and 87,300 (38,100 to 209,000) late-onset infant iGBS cases, 31,100 deaths (14,400 to 66,400), 17,900 (6,380 to 49,900) cases of moderate and severe neurodevelopmental impairment, and 23,000 (10,000 to 56,400) stillbirths. A vaccine effective against GBS-associated prematurity might also avert 185,000 (13,500 to 407,000) preterm births. Globally, a 1-dose vaccine programme could cost $1.7 billion but save $385 million in healthcare costs. Estimated global NMB ranged from $1.1 billion ($-0.2 to 3.8 billion) under the least favourable normative assumptions to $17 billion ($9.1 to 31 billion) under the most favourable normative assumptions. The main limitation of our analysis was the scarcity of data to inform some of the model parameters such as those governing health-related quality of life and long-term costs from disability, and how these parameters may vary across country contexts.
In this study, we found that maternal GBS vaccination could have a large impact on infant morbidity and mortality. Globally, a GBS maternal vaccine at reasonable prices is likely to be a cost-effective intervention.
Journal Article
COVID-19 length of hospital stay: a systematic review and data synthesis
by
Rees, Eleanor M.
,
Clifford, Samuel
,
Group, CMMID Working
in
Bed demand
,
Betacoronavirus
,
Bias
2020
Background
The COVID-19 pandemic has placed an unprecedented strain on health systems, with rapidly increasing demand for healthcare in hospitals and intensive care units (ICUs) worldwide. As the pandemic escalates, determining the resulting needs for healthcare resources (beds, staff, equipment) has become a key priority for many countries. Projecting future demand requires estimates of how long patients with COVID-19 need different levels of hospital care.
Methods
We performed a systematic review of early evidence on length of stay (LoS) of patients with COVID-19 in hospital and in ICU. We subsequently developed a method to generate LoS distributions which combines summary statistics reported in multiple studies, accounting for differences in sample sizes. Applying this approach, we provide distributions for total hospital and ICU LoS from studies in China and elsewhere, for use by the community.
Results
We identified 52 studies, the majority from China (46/52). Median hospital LoS ranged from 4 to 53 days within China, and 4 to 21 days outside of China, across 45 studies. ICU LoS was reported by eight studies—four each within and outside China—with median values ranging from 6 to 12 and 4 to 19 days, respectively. Our summary distributions have a median hospital LoS of 14 (IQR 10–19) days for China, compared with 5 (IQR 3–9) days outside of China. For ICU, the summary distributions are more similar (median (IQR) of 8 (5–13) days for China and 7 (4–11) days outside of China). There was a visible difference by discharge status, with patients who were discharged alive having longer LoS than those who died during their admission, but no trend associated with study date.
Conclusion
Patients with COVID-19 in China appeared to remain in hospital for longer than elsewhere. This may be explained by differences in criteria for admission and discharge between countries, and different timing within the pandemic. In the absence of local data, the combined summary LoS distributions provided here can be used to model bed demands for contingency planning and then updated, with the novel method presented here, as more studies with aggregated statistics emerge outside China.
Journal Article
Using a real-world network to model localized COVID-19 control strategies
2020
Case isolation and contact tracing can contribute to the control of COVID-19 outbreaks
1
,
2
. However, it remains unclear how real-world social networks could influence the effectiveness and efficiency of such approaches. To address this issue, we simulated control strategies for SARS-CoV-2 transmission in a real-world social network generated from high-resolution GPS data that were gathered in the course of a citizen-science experiment
3
,
4
. We found that tracing the contacts of contacts reduced the size of simulated outbreaks more than tracing of only contacts, but this strategy also resulted in almost half of the local population being quarantined at a single point in time. Testing and releasing non-infectious individuals from quarantine led to increases in outbreak size, suggesting that contact tracing and quarantine might be most effective as a ‘local lockdown’ strategy when contact rates are high. Finally, we estimated that combining physical distancing with contact tracing could enable epidemic control while reducing the number of quarantined individuals. Our findings suggest that targeted tracing and quarantine strategies would be most efficient when combined with other control measures such as physical distancing.
Combining fine-scale social contact data with epidemic modeling reveals interactions among contact tracing, quarantine, testing and physical distancing for controlling COVID-19.
Journal Article
paramix: An R package for parameter discretisation in compartmental models, with application to calculating years of life lost
by
Pearson, Carl A. B.
,
Goodfellow, Lucy
,
Procter, Simon R.
in
Adult
,
Age composition
,
Age groups
2025
Compartmental infectious disease models are used to calculate disease transmission, estimate underlying rates, forecast future burden, and compare benefits across intervention scenarios. These models aggregate individuals into compartments, often stratified by characteristics to represent groups that might be intervention targets or otherwise of particular concern. Ideally, model calculation could occur at the most demanding resolution for the overall analysis, but this may be infeasible due to availability of computational resources or empirical data. Instead, detailed population age structure might be consolidated into broad categories such as children, working-age adults, and seniors. Researchers must then discretise key epidemic parameters, like the infection-fatality ratio, for these lower resolution groups. After estimating outcomes for those crude groups, follow-on analyses, such as calculating years of life lost (YLLs), may need to distribute or weight those low-resolution outcomes back to the high resolution. The specific calculation for these aggregation and disaggregation steps can substantially influence outcomes. To assist researchers with these tasks, we developed paramix , an R package which simplifies the transformations between high and low resolution. We demonstrate applying paramix to a common discretisation analysis: using age structured models for health economic calculations comparing YLLs. We compare how estimates vary between paramix and several alternatives for an archetypal model, including comparison to a high resolution benchmark. We consistently found that paramix yielded the most similar estimates to the high-resolution model, for the same computational burden of low-resolution models. In our illustrative analysis, the non- paramix methods estimated up to twice as many YLLs averted as the paramix approach, which would likely lead to a similarly large impact on incremental cost-effectiveness ratios used in economic evaluations.
Journal Article
The potential global health impact and cost-effectiveness of next-generation influenza vaccines: A modelling analysis
2025
Next-generation influenza vaccines (NGIVs) are in development and have the potential to achieve substantial reductions in influenza burden, with resulting widespread health and economic benefits. The prices at which their market can be sustained and which vaccination strategies may maximise health impact and cost-effectiveness, particularly in low- and middle-income countries, are unknown, yet such an understanding could provide a valuable tool for vaccine development and investment decision-making at a national and global level. To address this evidence gap, we projected the health and economic impact of NGIVs in 186 countries and territories.
We inferred current influenza transmission parameters from World Health Organization (WHO) FluNet data in regions defined by their seasonal influenza timing and positivity, and projected 30 years of influenza epidemics, accounting for demographic changes. We considered vaccines including current seasonal vaccines, vaccines with increased efficacy, duration, and breadth of protection, and universal vaccines, defined in line with WHO Preferred Product Characteristics. We estimated cost-effectiveness of different vaccination scenarios using novel estimates of key health outcomes and costs. NGIVs have the potential to substantially reduce influenza burden: compared to no vaccination, vaccinating 50% of children aged under 18 annually prevented 1.3 (95% uncertainty range (UR): 1.2-1.5) billion infections using current vaccines, 2.6 (95% UR: 2.4-2.9) billion infections using vaccines with improved efficacy or breadth, and 3.0 (95% UR: 2.7-3.3) billion infections using universal vaccines. In many countries, NGIVs were cost-effective at higher prices than typically paid for existing seasonal vaccines. However, tiered prices may be necessary for improved vaccines to be cost-effective in lower income countries. This study is limited by the availability of accurate data on influenza incidence and influenza-associated health outcomes and costs. Furthermore, the model involves simplifying assumptions around vaccination coverage and administration, and does not account for societal costs or budget impact of NGIVs. How NGIVs will compare to the vaccine types considered in this model when developed is unknown. We conducted sensitivity analyses to investigate key model parameters.
This study highlights the considerable potential health and economic benefits of NGIVs, but also the variation in cost-effectiveness between high-income and low- and middle-income countries. This work provides a framework for long-term global cost-effectiveness evaluations, and the findings can inform a pathway to developing NGIVs and rolling them out globally.
Journal Article
Assessing the impacts of COVID-19 vaccination programme’s timing and speed on health benefits, cost-effectiveness, and relative affordability in 27 African countries
by
Pearson, Carl A. B.
,
Jit, Mark
,
Uzochukwu, Benjamin
in
Adults
,
Affordability
,
Africa - epidemiology
2023
Background
The COVID-19 vaccine supply shortage in 2021 constrained roll-out efforts in Africa while populations experienced waves of epidemics. As supply improves, a key question is whether vaccination remains an impactful and cost-effective strategy given changes in the timing of implementation.
Methods
We assessed the impact of vaccination programme timing using an epidemiological and economic model. We fitted an age-specific dynamic transmission model to reported COVID-19 deaths in 27 African countries to approximate existing immunity resulting from infection before substantial vaccine roll-out. We then projected health outcomes (from symptomatic cases to overall disability-adjusted life years (DALYs) averted) for different programme start dates (01 January to 01 December 2021,
n
= 12) and roll-out rates (slow, medium, fast; 275, 826, and 2066 doses/million population-day, respectively) for viral vector and mRNA vaccines by the end of 2022. Roll-out rates used were derived from observed uptake trajectories in this region. Vaccination programmes were assumed to prioritise those above 60 years before other adults.
We collected data on vaccine delivery costs, calculated incremental cost-effectiveness ratios (ICERs) compared to no vaccine use, and compared these ICERs to GDP per capita. We additionally calculated a relative affordability measure of vaccination programmes to assess potential nonmarginal budget impacts.
Results
Vaccination programmes with early start dates yielded the most health benefits and lowest ICERs compared to those with late starts. While producing the most health benefits, fast vaccine roll-out did not always result in the lowest ICERs. The highest marginal effectiveness within vaccination programmes was found among older adults. High country income groups, high proportions of populations over 60 years or non-susceptible at the start of vaccination programmes are associated with low ICERs relative to GDP per capita. Most vaccination programmes with small ICERs relative to GDP per capita were also relatively affordable.
Conclusion
Although ICERs increased significantly as vaccination programmes were delayed, programmes starting late in 2021 may still generate low ICERs and manageable affordability measures. Looking forward, lower vaccine purchasing costs and vaccines with improved efficacies can help increase the economic value of COVID-19 vaccination programmes.
Journal Article
Potential health and economic impact of paediatric vaccination using next-generation influenza vaccines in Kenya: a modelling study
2023
Background
Influenza is a major year-round cause of respiratory illness in Kenya, particularly in children under 5. Current influenza vaccines result in short-term, strain-specific immunity and were found in a previous study not to be cost-effective in Kenya. However, next-generation vaccines are in development that may have a greater impact and cost-effectiveness profile.
Methods
We expanded a model previously used to evaluate the cost-effectiveness of seasonal influenza vaccines in Kenya to include next-generation vaccines by allowing for enhanced vaccine characteristics and multi-annual immunity. We specifically examined vaccinating children under 5 years of age with improved vaccines, evaluating vaccines with combinations of increased vaccine effectiveness, cross-protection between strains (breadth) and duration of immunity. We evaluated cost-effectiveness using incremental cost-effectiveness ratios (ICERs) and incremental net monetary benefits (INMBs) for a range of values for the willingness-to-pay (WTP) per DALY averted. Finally, we estimated threshold per-dose vaccine prices at which vaccination becomes cost-effective.
Results
Next-generation vaccines can be cost-effective, dependent on the vaccine characteristics and assumed WTP thresholds. Universal vaccines (assumed to provide long-term and broad immunity) are most cost-effective in Kenya across three of four WTP thresholds evaluated, with the lowest median value of ICER per DALY averted ($263, 95% Credible Interval (CrI): $ − 1698, $1061) and the highest median INMBs. At a WTP of $623, universal vaccines are cost-effective at or below a median price of $5.16 per dose (95% CrI: $0.94, $18.57). We also show that the assumed mechanism underlying infection-derived immunity strongly impacts vaccine outcomes.
Conclusions
This evaluation provides evidence for country-level decision makers about future next-generation vaccine introduction, as well as global research funders about the potential market for these vaccines. Next-generation vaccines may offer a cost-effective intervention to reduce influenza burden in low-income countries with year-round seasonality like Kenya.
Journal Article
Correspondence to: Estimating the full health and economic benefits of current and future influenza vaccines
2023
We recently published an article in
BMC Medicine
looking at the potential health and economic impact of paediatric vaccination using next-generation influenza vaccines in Kenya: a modelling study. In their commentary on our article, Lafond et al. highlight the potential importance of the wider benefits of vaccination on cost-effectiveness. Whilst we agree with many points raised in the commentary, we think it raises further interesting discussion points, specifically around model complexity, model assumptions and data availability. These points are both relevant to this manuscript but have wider implications for vaccine cost-effectiveness studies.
Journal Article
Estimation of country-level incidence of early-onset invasive Group B Streptococcus disease in infants using Bayesian methods
2021
Neonatal invasive disease caused by Group B Streptococcus (GBS) is responsible for much acute mortality and long-term morbidity. To guide development of better prevention strategies, including maternal vaccines that protect neonates against GBS, it is necessary to estimate the burden of this condition globally and in different regions. Here, we present a Bayesian model that estimates country-specific invasive GBS (iGBS) disease incidence in children aged 0 to 6 days. The model combines different types of epidemiological data, each of which has its own limitations: GBS colonization prevalence in pregnant women, risk of iGBS disease in children born to GBS-colonized mothers and direct estimates of iGBS disease incidence where available. In our analysis, we present country-specific maternal GBS colonization prevalence after adjustment for GBS detection assay used in epidemiological studies. We then integrate these results with other epidemiological data and estimate country-level incidence of iGBS disease including in countries with no studies that directly estimate incidence. We are able to simultaneously estimate two key epidemiological quantities: the country-specific incidence of early-onset iGBS disease, and the risk of iGBS disease in babies born to GBS-colonized women. Overall, we believe our method will contribute to a more comprehensive quantification of the global burden of this disease, inform cost-effectiveness assessments of potential maternal GBS vaccines and identify key areas where data are necessary.
Journal Article
Correction: COVID-19 vaccination in Sindh Province, Pakistan: A modelling study of health impact and cost-effectiveness
2022
[This corrects the article DOI: 10.1371/journal.pmed.1003815.].
Journal Article