Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Prohaczka, Günther"
Sort by:
Characterization of cephalic and non-cephalic sensory cell types provides insight into joint photo- and mechanoreceptor evolution
Rhabdomeric opsins (r-opsins) are light sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic r-opsin1 -expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer and found that nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells light – mediated by r-Opsin1 – adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep-learning-based quantitative behavioral analysis for animal trunk movements and identify a light– and r-Opsin-1–dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.
Characterization of cephalic and non-cephalic sensory cell types provides insight into joint photo- and mechanoreceptor evolution
ABSTRACT Rhabdomeric Opsins (r-Opsins) are light-sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-Opsins cells were non-photosensory. Our profiling of cephalic and non-cephalic r-opsin1-expressing cells of the marine bristleworm Platynereis dumerilii reveals shared and distinct features. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. We determine that Pdu-r-Opsin1 is a Gαq-coupled blue-light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells, light – mediated by r-Opsin1 – adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep learning-based quantitative behavioral analysis for animal trunk movements, and identify a light-and r-Opsin-1-dependent fine-tuning of the worm’s undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results suggest an evolutionary concept in which r-Opsins act as ancient, light-dependent modulators of mechanosensation, and suggest that light-independent mechanosensory roles of r-Opsins likely evolved secondarily.