Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Prommer, Judith"
Sort by:
Plant roots increase both decomposition and stable organic matter formation in boreal forest soil
by
Heinonsalo, Jussi
,
Sietiö, Outi-Maaria
,
Straková, Petra
in
631/158/2449
,
631/158/2454
,
631/158/47
2019
Boreal forests are ecosystems with low nitrogen (N) availability that store globally significant amounts of carbon (C), mainly in plant biomass and soil organic matter (SOM). Although crucial for future climate change predictions, the mechanisms controlling boreal C and N pools are not well understood. Here, using a three-year field experiment, we compare SOM decomposition and stabilization in the presence of roots, with exclusion of roots but presence of fungal hyphae and with exclusion of both roots and fungal hyphae. Roots accelerate SOM decomposition compared to the root exclusion treatments, but also promote a different soil N economy with higher concentrations of organic soil N compared to inorganic soil N accompanied with the build-up of stable SOM-N. In contrast, root exclusion leads to an inorganic soil N economy (i.e., high level of inorganic N) with reduced stable SOM-N build-up. Based on our findings, we provide a framework on how plant roots affect SOM decomposition and stabilization.
Understanding mechanisms of soil organic matter (SOM) decomposition and stabilisation improves soil-climate feedback predictions. Here the authors show that roots in boreal forest promote organic nitrogen economy and provide a framework on how roots affect decomposition and stabilisation of SOM.
Journal Article
Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial
by
Hood-Nowotny, Rebecca Clare
,
Hofhansl, Florian
,
Kitzler, Barbara
in
Accumulation
,
Agricultural land
,
Agricultural production
2014
Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.
Journal Article
Amino acid production exceeds plant nitrogen demand in Siberian tundra
by
Kuhry, Peter
,
Takriti, Mounir
,
Alves, Ricardo J Eloy
in
Acid production
,
alaskan tundra
,
Amino acids
2018
Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.
Journal Article
More extreme and frequent drought periods reduced crop production and altered stable isotope ratios of C and N in plants
by
Watzinger, Andrea
,
Miloczki, Julia
,
Hood-Nowotny, Rebecca
in
Agricultural production
,
Crop residues
,
Crop rotation
2023
Climate change scenarios predict more frequent and intense drought periods for 2071–2100 in the most important and intensively used agricultural region of Austria, the Marchfeld. Current and predicted lower precipitation scenarios were simulated at a lysimeter station for 9 years. Plant biomass, nitrogen (N) and carbon (C) content, and δ13C and δ15N values of plant compartments were monitored in years 7–9. Aboveground biomass of cereals and grain yield decreased under the predicted scenario, while the quality of grain (% N) was unaffected. Weed and catch crops grown in winter were not affected or were even positively affected, possibly due to the accumulation of nutrients in the soil following the lower plant uptake in summer. Accordingly, low plant δ15N values were mainly attributed to the presence of higher proportion of mineral fertilizer in the predicted precipitation scenario. As expected, water stress significantly increased δ13C values in plants grown over summer, while this was not seen for plants growing over winter. Fertile agricultural soil might ameliorate but cannot outbalance the negative impact of more frequent and intense drought periods.
Journal Article
Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought
2020
Nitrification is a fundamental process in terrestrial nitrogen cycling. However, detailed information on how climate change affects the structure of nitrifier communities is lacking, specifically from experiments in which multiple climate change factors are manipulated simultaneously. Consequently, our ability to predict how soil nitrogen (N) cycling will change in a future climate is limited. We conducted a field experiment in a managed grassland and simultaneously tested the effects of elevated atmospheric CO
2
, temperature, and drought on the abundance of active ammonia-oxidizing bacteria (AOB) and archaea (AOA), comammox (CMX)
Nitrospira
, and nitrite-oxidizing bacteria (NOB), and on gross mineralization and nitrification rates. We found that N transformation processes, as well as gene and transcript abundances, and nitrifier community composition were remarkably resistant to individual and interactive effects of elevated CO
2
and temperature. During drought however, process rates were increased or at least maintained. At the same time, the abundance of active AOB increased probably due to higher NH
4
+
availability. Both, AOA and comammox
Nitrospira
decreased in response to drought and the active community composition of AOA and NOB was also significantly affected. In summary, our findings suggest that warming and elevated CO
2
have only minor effects on nitrifier communities and soil biogeochemical variables in managed grasslands, whereas drought favors AOB and increases nitrification rates. This highlights the overriding importance of drought as a global change driver impacting on soil microbial community structure and its consequences for N cycling.
Journal Article
A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle
by
Zezula, David
,
Wasner, Daniel
,
Prommer, Judith
in
Abiotic factors
,
Bioavailability
,
Biogeochemical cycles
2019
Efforts to understand and model the current and future behavior of the global
phosphorus (P) cycle are limited by the availability of global data on rates of soil P processes, as well as their environmental controls. Here, we present a novel isotope pool dilution approach using 33P labeling of live and sterile soils, which allows for high-quality data on gross fluxes of soil inorganic P (Pi) sorption and desorption, as well as of gross fluxes of organic P mineralization and microbial Pi uptake to be obtained. At the same time, net immobilization of 33Pi by soil microbes and abiotic
sorption can be easily derived and partitioned. Compared with other approaches, we used short incubation times (up to 48 h), avoiding tracer
remineralization, which was confirmed by the separation of organic P and Pi using isobutanol fractionation. This approach is also suitable for strongly weathered and P-impoverished soils, as the sensitivity is increased by the extraction of exchangeable bioavailable Pi (Olsen Pi; 0.5 M NaHCO3)
followed by Pi measurement using the malachite green assay. Biotic
processes were corrected for desorption/sorption processes using adequate
sterile abiotic controls that exhibited negligible microbial and
extracellular phosphatase activities. Gross rates were calculated using
analytical solutions of tracer kinetics, which also allowed for the study of gross
soil P dynamics under non-steady-state conditions. Finally, we present major
environmental controls of gross P-cycle processes that were measured for
three P-poor tropical forest and three P-rich temperate grassland soils.
Journal Article
Inhibition profile of three biological nitrification inhibitors and their response to soil pH modification in two contrasting soils
by
Giguere, Andrew T
,
Sandén, Taru
,
Spiegel, Heide
in
Agricultural land
,
Alkaline soils
,
Ammonia
2024
Abstract
Up to 70% of the nitrogen (N) fertilizer applied to agricultural soils is lost through microbially mediated processes, such as nitrification. This can be counteracted by synthetic and biological compounds that inhibit nitrification. However, for many biological nitrification inhibitors (BNIs), the interaction with soil properties, nitrifier specificity, and effective concentrations are unclear. Here, we investigated three synthetic nitrification inhibitors (SNIs) (DCD, DMPP, and nitrapyrin) and three BNIs [methyl 3(4-hydroxyphenyl) propionate (MHPP), methyl 3(4-hydroxyphenyl) acrylate (MHPA), and limonene] in two agricultural soils differing in pH and nitrifier communities. The efficacies of SNIs and BNIs were resilient to short-term pH changes in the neutral pH soil, whereas the efficacy of some BNIs increased by neutralizing the alkaline soil. Among the BNIs, MHPA showed the highest inhibition and was, together with MHPP, identified as a putative AOB/comammox-selective inhibitor. Additionally, MHPA and limonene effectively inhibited nitrification at concentrations comparable to those used for DCD. Moreover, we identified the effective concentrations at which 50% and 80% of inhibition is observed (EC50 and EC80) for the BNIs, and similar EC80 values were observed in both soils. Overall, our results show that these BNIs could potentially serve as effective alternatives to SNIs currently used.
Characterization of synthetic and biological nitrification inhibitors response in soil pH manipulations and effective concentrations.
Journal Article
Increased microbial expression of organic nitrogen cycling genes in long-term warmed grassland soils
by
Sigurdsson, Bjarni D
,
Janssens, Ivan A
,
Tveit, Alexander T
in
Acids
,
Bacteria
,
Biodegradation
2021
Global warming increases soil temperatures and promotes faster growth and turnover of soil microbial communities. As microbial cell walls contain a high proportion of organic nitrogen, a higher turnover rate of microbes should also be reflected in an accelerated organic nitrogen cycling in soil. We used a metatranscriptomics and metagenomics approach to demonstrate that the relative transcription level of genes encoding enzymes involved in the extracellular depolymerization of high-molecular-weight organic nitrogen was higher in medium-term (8 years) and long-term (>50 years) warmed soils than in ambient soils. This was mainly driven by increased levels of transcripts coding for enzymes involved in the degradation of microbial cell walls and proteins. Additionally, higher transcription levels for chitin, nucleic acid, and peptidoglycan degrading enzymes were found in long-term warmed soils. We conclude that an acceleration in microbial turnover under warming is coupled to higher investments in N acquisition enzymes, particularly those involved in the breakdown and recycling of microbial residues, in comparison with ambient conditions.
Journal Article
Endogenous nitric oxide generation in protoplast chloroplasts
by
Tewari, Rajesh Kumar
,
Prommer, Judith
,
Watanabe, Masami
in
antagonists & inhibitors
,
Arabidopsis
,
Arabidopsis - cytology
2013
KEY MESSAGE : NO generation is studied in the protoplast chloroplasts. NO, ONOO ⁻ and ROS (O ₂ ⁻ and H ₂ O ₂ ) are generated in chloroplasts. Nitric oxide synthase-like protein appears to be involved in NO generation. Nitric oxide stimulates chlorophyll biosynthesis and chloroplast differentiation. The present study was conducted to better understand the process of NO generation in the leaf chloroplasts and protoplasts. NO, peroxynitrite and superoxide anion were investigated in the protoplasts and isolated chloroplasts using specific dyes, confocal laser scanning and light microscopy. The level of NO was highest after protoplast isolation and subsequently decreased during culture. Suppression of NO signal in the presence of PTIO, suggests that diaminofluorescein-2 diacetate (DAF-2DA) detected NO. Detection of peroxynitrite, a reaction product of NO and superoxide anion, further suggests NO generation. Moreover, generation of NO and peroxynitrite in the chloroplasts of wild-type Arabidopsis and their absence or weak signals in the leaf-derived protoplasts of Atnoa1 mutants confirmed the reactivity of DAF-2DA and aminophenyl fluorescein to NO and peroxynitrite, respectively. Isolated chloroplasts also showed signal of NO. Suppression of NO signal in the presence of 100 μM nitric oxide synthase inhibitors [L-NNA, Nω-nitro-L-arginine and PBIT, S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea] revealed that nitric oxide synthase-like system is involved in NO synthesis. Suppression of NO signal in the protoplasts isolated in the presence of cycloheximide suggests de novo synthesis of NO generating protein during the process of protoplast isolation. Furthermore, the lack of inhibition of NO production by sodium tungstate (250 μM) and inhibition by L-NNA, and PBIT suggest involvement NOS-like protein, but not nitrate reductase, in NO generation in the leaf chloroplasts and protoplasts.
Journal Article
A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem
by
Poeplau, Christopher
,
Sigurdsson, Bjarni D.
,
Peñuelas, Josep
in
631/158
,
631/158/2165
,
631/158/2445
2020
Temperature governs most biotic processes, yet we know little about how warming affects whole ecosystems. Here we examined the responses of 128 components of a subarctic grassland to either 5–8 or >50 years of soil warming. Warming of >50 years drove the ecosystem to a new steady state possessing a distinct biotic composition and reduced species richness, biomass and soil organic matter. However, the warmed state was preceded by an overreaction to warming, which was related to organism physiology and was evident after 5–8 years. Ignoring this overreaction yielded errors of >100% for 83 variables when predicting their responses to a realistic warming scenario of 1 °C over 50 years, although some, including soil carbon content, remained stable after 5–8 years. This study challenges long-term ecosystem predictions made from short-term observations, and provides a framework for characterization of ecosystem responses to sustained climate change.
Comparing grassland ecosystem responses of 128 biotic and abiotic variables to geothermal warming, the authors find that short-term (5–8 years) responses are poor predictors of change over the long term (>50 years).
Journal Article