Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Protter, Andrew A."
Sort by:
Elucidating host cell response pathways and repurposing therapeutics for SARS-CoV-2 and other coronaviruses
by
Koh, Xiaoying
,
Visuthikraisee, Viwat
,
Luedtke, Gregory R.
in
631/208/199
,
631/208/212
,
631/337/2019
2022
COVID-19, first reported in late 2019, is an ongoing pandemic that has been causing devastation across the globe. Although there are multiple vaccines that can prevent severe symptoms, effective COVID-19 therapeutics are still of importance. Using our proprietary in silico engine, we screened more than 22,000 unique compounds represented by over half a million gene expression profiles to uncover compounds that can be repurposed for SARS-CoV-2 and other coronaviruses in a timely and cost-efficient manner. We then tested 13 compounds in vitro and found three with potency against SARS-CoV-2 with reasonable cytotoxicity. Bortezomib and homoharringtonine are some of the most promising hits with IC
50
of 1.39 μM and 0.16 μM, respectively for SARS-CoV-2. Tanespimycin and homoharringtonine were effective against the common cold coronaviruses. In-depth analysis highlighted proteasome, ribosome, and heat shock pathways as key targets in modulating host responses during viral infection. Further studies of these pathways and compounds have provided novel and impactful insights into SARS-CoV-2 biology and host responses that could be further leveraged for COVID-19 therapeutics development.
Journal Article
Progressive Transforming Growth Factor β1–induced Lung Fibrosis Is Blocked by an Orally Active ALK5 Kinase Inhibitor
by
Bonniaud, Philippe
,
Kapoun, Ann M.
,
Kolb, Martin
in
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
,
Biological and medical sciences
,
Blood and lymphatic vessels
2005
Journal Article
Selective p38α mitogen-activated protein kinase inhibitor attenuates lung inflammation and fibrosis in IL-13 transgenic mouse model of asthma
by
Protter, Andrew
,
Ma, Jing
,
Higgins, Linda
in
Anti-inflammatory agents
,
Asthma
,
Cell activation
2008
p38 Mitogen-activated protein kinase (MAPK) plays a critical role in the activation of inflammatory cells. We investigated the anti-inflammatory effects of a p38α-selective MAPK inhibitor (SD-282) in a mouse transgenic (CC10:IL-13) asthma model. The CC-10-driven over-expression of IL-13 in the mouse lung/airway has been shown to result in a remarkable phenotype recatitulating many features of asthma and characterized by eosinophilic and mononuclear inflammation, with airway epithelial cell hypertrophy, mucus cell metaplasia, the hyperproduction of neutral and acidic mucus, the deposition of Charcot-Leyden-like crystal, and airway sub-epitheilial fibrosis. Here we show how activated p38 MAPK can be observed in the lungs at the onset of asthma ie, around 8 weeks of age in both female and male mice. We also show that administration of a p38α MAPK selective inhibitor, SD-282 at 30 or 90 mg/kg, twice a day for a period of four weeks beginning at the onset of asthma, significantly reduced the inflammation (p < 0.001); hyperplasia of airway epithelium (p < 0.05); goblet cell metaplasia and mucus hypersecretion (p < 0.001) and reduced lung remodeling and fibrosis (p < 0.01), alleviating the severity of lung damage as measured by a composite score (p < 0.05). Furthermore, SD-282 significantly reduced activated p38 MAPK in the lymphocytes and epithelial cells (p < 0.001). Simultaneously, identical studies were conducted with an anti-fibrotic TGFβR1 kinase inhibitor (SD-208) which demonstrated anti-fibrotic but not anti-inflammatory properties. These findings suggest that the p38α-selective MAPK inhibitor may have dual therapeutic potential in attenuating both the inflammatory component and the fibrotic component of asthma and other Th2-polarized inflammatory lung diseases.
Journal Article
p38 MAPK inhibition reduces diabetes-induced impairment of wound healing
2009
In healthy tissue, a wound initiates an inflammatory response characterized by the presence of a hematoma, infiltration of inflammatory cells into the wound and, eventually, wound healing. In pathological conditions like diabetes mellitus, wound healing is impaired by the presence of chronic nonresolving inflammation. p38 mitogen-activated protein kinase (MAPK) inhibitors have demonstrated anti-inflammatory effects, primarily by inhibiting the expression of inflammatory cytokines and regulating cellular traffic into wounds. The db/db mouse model of type 2 diabetes was used to characterize the time course of expression of activated p38 during impaired wound healing. The p38α-selective inhibitor, SCIO-469, was applied topically and effects on p38 activation and on wound healing were evaluated. A topical dressing used clinically, Promogran™, was used as a comparator. In this study, we established that p38 is phosphorylated on Days 1 to 7 post-wounding in db/db mice. Further, we demonstrated that SCIO-469, at a dose of 10 μg/wound, had a positive effect on wound contraction, granulation tissue formation, and re-epithelialization, and also increased wound maturity during healing. These effects were similar to or greater than those observed with Promogran™. These results suggest a novel approach to prophylactic and therapeutic management of chronic wounds associated with diabetes or other conditions in which healing is impaired.
Journal Article
Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer's mouse model
2013
Latrepirdine (Dimebon) is a pro-neurogenic, antihistaminic compound that has yielded mixed results in clinical trials of mild to moderate Alzheimer's disease, with a dramatically positive outcome in a Russian clinical trial that was unconfirmed in a replication trial in the United States. We sought to determine whether latrepirdine (LAT)-stimulated amyloid precursor protein (APP) catabolism is at least partially attributable to regulation of macroautophagy, a highly conserved protein catabolism pathway that is known to be impaired in brains of patients with Alzheimer's disease (AD). We utilized several mammalian cellular models to determine whether LAT regulates mammalian target of rapamycin (mTOR) and Atg5-dependent autophagy. Male TgCRND8 mice were chronically administered LAT prior to behavior analysis in the cued and contextual fear conditioning paradigm, as well as immunohistological and biochemical analysis of AD-related neuropathology. Treatment of cultured mammalian cells with LAT led to enhanced mTOR- and Atg5-dependent autophagy. Latrepirdine treatment of TgCRND8 transgenic mice was associated with improved learning behavior and with a reduction in accumulation of Aβ42 and α-synuclein. We conclude that LAT possesses pro-autophagic properties in addition to the previously reported pro-neurogenic properties, both of which are potentially relevant to the treatment and/or prevention of neurodegenerative diseases. We suggest that elucidation of the molecular mechanism(s) underlying LAT effects on neurogenesis, autophagy and behavior might warranty the further study of LAT as a potentially viable lead compound that might yield more consistent clinical benefit following the optimization of its pro-neurogenic, pro-autophagic and/or pro-cognitive activities.
Journal Article
Latrepirdine stimulates autophagy and reduces accumulation of α-synuclein in cells and in mouse brain
2013
Latrepirdine (Dimebon; dimebolin) is a neuroactive compound that was associated with enhanced cognition, neuroprotection and neurogenesis in laboratory animals, and has entered phase II clinical trials for both Alzheimer's disease and Huntington's disease (HD). Based on recent indications that latrepirdine protects cells against cytotoxicity associated with expression of aggregatable neurodegeneration-related proteins, including Aβ42 and γ-synuclein, we sought to determine whether latrepirdine offers protection to
Saccharomyces cerevisiae
. We utilized separate and parallel expression in yeast of several neurodegeneration-related proteins, including α-synuclein (α-syn), the amyotrophic lateral sclerosis-associated genes
TDP43
and
FUS
, and the HD-associated protein huntingtin with a 103 copy-polyglutamine expansion (
HTT
gene; htt-103Q). Latrepirdine effects on α-syn clearance and toxicity were also measured following treatment of SH-SY5Y cells or chronic treatment of wild-type mice. Latrepirdine only protected yeast against the cytotoxicity associated with α-syn, and this appeared to occur via induction of autophagy. We further report that latrepirdine stimulated the degradation of α-syn in differentiated SH-SY5Y neurons, and in mouse brain following chronic administration, in parallel with elevation of the levels of markers of autophagic activity. Ongoing experiments will determine the utility of latrepirdine to abrogate α-syn accumulation in transgenic mouse models of α-syn neuropathology. We propose that latrepirdine may represent a novel scaffold for discovery of robust pro-autophagic/anti-neurodegeneration compounds, which might yield clinical benefit for synucleinopathies including Parkinson's disease, Lewy body dementia, rapid eye movement (REM) sleep disorder and/or multiple system atrophy, following optimization of its pro-autophagic and pro-neurogenic activities.
Journal Article
Topical alpha-selective p38 MAP kinase inhibition reduces acute skin inflammation in guinea pig
Certain skin pathologies, including psoriasis, are thought to be immune-mediated inflammatory diseases. Available literature clearly indicates the involvement of inflammatory cells (neutrophils, T cells, and macrophages), their cytokines, and the p38 mitogen-activated protein kinase (MAPK) signaling pathway in the pathophysiology of psoriasis. Neutrophils play an important role in the formation of acute inflammatory changes in psoriasis. Acute inflammation or acute flares in psoriasis remain poorly addressed in clinical medicine. In this communication, we first establish a simple and reproducible model for studying neutrophil-mediated acute skin inflammation. Using the hairless guinea pig, due to the similarity of skin architecture to that of human, acute inflammation was induced with an intradermal injection of 50 μg/mL lipopolysaccharide (LPS) in 50 μL solution. Myeloperoxidase (MPO) activity was measured by MPO-positive neutrophils and shown to increase for 24-hours post-injection. Simultaneously, the level of phosphorylated p38 MAPK was documented for 48-hours post-LPS injection in the skin. Next, we used this model to examine the therapeutic potential of an α-selective p38 MAPK inhibitor, SCIO-469. A comparison of topical application of SCIO-469 at 5 mg/mL or 15 mg/mL to vehicle revealed that SCIO-469 dose-dependently reduces acute skin inflammation and that this effect is statistically significant at the higher dose. Further examination of tissues that received this dose also revealed statistically significant reduction of MPO activity, phosphorylated p38 MAPK, interleukin-6, and cyclooxygenase-2. These data suggest that the α-selective p38 MAPK inhibitor, SCIO-469, acts as a topical anti-inflammatory agent via the p38 MAPK pathway to reduce neutrophil induced acute inflammation in the skin. These observations suggest that α-selective p38 MAPK inhibition may be an effective therapeutic strategy to manage acute skin inflammation.
Journal Article
Pharmacological Properties of SD-282 – An α-Isoform Selective Inhibitor for p38 MAP Kinase
by
Chavez, Jose Carlos
,
Koppelman, Bruce
,
Kapoun, Ann M.
in
Animals
,
Anti-Inflammatory Agents - pharmacology
,
Disease Models, Animal
2008
The effects of small-molecule p38 inhibitors in numerous models of different disease states have been published, including those of SD-282, an indole-5-carboxamide inhibitor. The aim of the present study was to evaluate the pharmacological activity of SD-282 on cytokine production in vitro as well as in 2 in vivo models of inflammation in order to illuminate the role of this particular inhibitor in diverse disease states. The results presented here provide further characterization of SD-282 and provide a context in which to interpret the activity of this p38 inhibitor in models of arthritis, pain, myocardial injury, sepsis and asthma; all of which have an inflammatory component. SD-282 represents a valuable tool to elucidate the role of p38 MAP kinase in multiple models of inflammation.
Journal Article
Independent Developmental Programs for Two Estrogen-Regulated Genes
by
Williams, David L.
,
Elbrecht, Alex
,
Protter, Andrew A.
in
Animals
,
Apolipoproteins - analysis
,
Apolipoproteins - genetics
1984
Measurement of hepatic apolipoprotein II and vitellogenin II messenger RNA during chicken embryogenesis showed that these genes acquire estrogen responsiveness at different stages of development. Sensitive solution hybridization assays with excess complementary DNA showed that apolipoprotein II transcripts were induced to 500 molecules per cell at day 9, whereas induction of vitellogenin II messenger RNA was not found until day 11. Thus, two estrogen regulated genes of common function and coordinately regulated in the adult may be on independent developmental programs.
Journal Article