Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Pryor, Barry"
Sort by:
The sections of Alternaria: formalizing species-group concepts
The systematics of Alternaria and allied genera traditionally has been based on the characteristics of conidia and the sporulation apparatus. This emphasis on morphology in the reconstruction of organismal relationships has resulted in taxonomic uncertainty and flux for a number of taxa in Alternaria and the related genera Stemphylium, Embellisia, Nimbya and Ulocladium. The present study used a molecular phylogenetic approach for systematic resolution and incorporated extensive taxon sampling (n = 176 species) representing 10 genera and analyses of 10 protein-coding loci. Phylogenetic analyses based on five of these genes revealed eight distinct asexual lineages of Alternaria that cluster as the sister group to the asexual paraphyletic genus Ulocladium, while taxa with known teleomorphs currently circumscribed as Alternaria (the infectoria species-group) cluster among genera that also have representatives with known teleomorphs. This work proposes to elevate the eight well supported asexual lineages of Alternaria to the taxonomic rank of section. Evolutionary relationships among Alternaria and closely related genera are discussed.
The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species
Background Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally, Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially toxins. Description We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the pro-inflammatory potential of A. alternata . The Alternaria genomes database was built to provide a public platform to access the whole genome sequences, genome annotations, and comparative genomics data of these species. Genome annotation and comparison were performed using a pipeline that integrated multiple computational and comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently hosted using a customized installation of the Ensembl genome browser platform. Conclusion Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus . The database will be updated regularly with new genomes when they become available. The Alternaria genomes database is freely available for non-profit use at http://alternaria.vbi.vt.edu .
Interkingdom Gene Transfer of a Hybrid NPS/PKS from Bacteria to Filamentous Ascomycota
Nonribosomal peptides (NRPs) and polyketides (PKs) are ecologically important secondary metabolites produced by bacteria and fungi using multidomain enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Previous phylogenetic analyses of fungal NRPSs and PKSs have suggested that a few of these genes were acquired by fungi via horizontal gene transfer (HGT) from bacteria, including a hybrid NPS/PKS found in Cochliobolus heterostrophus (Dothideomycetes, Ascomycota). Here, we identify this hybrid gene in fungi representing two additional classes of Ascomycota (Aspergillus spp., Microsporum canis, Arthroderma spp., and Trichophyton spp., Eurotiomycetes; Chaetomium spp. and Metarhizium spp., Sordariomycetes) and use phylogenetic analyses of the most highly conserved domains from NRPSs (adenylation (A) domain) and PKSs (ketoacyl synthase (KS) domain) to examine the hypothesis that the hybrid NPS7/PKS24 was acquired by fungi from bacteria via HGT relatively early in the evolution of the Pezizomycotina. Our results reveal a unique ancestry of the A domain and KS domain in the hybrid gene relative to known fungal NRPSs and PKSs, provide strong evidence for HGT of the hybrid gene from a putative bacterial donor in the Burkholderiales, and suggest the HGT event occurred early in the evolution of the filamentous Ascomycota.
Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave
Carbonate caves represent subterranean ecosystems that are largely devoid of phototrophic primary production. In semiarid and arid regions, allochthonous organic carbon inputs entering caves with vadose-zone drip water are minimal, creating highly oligotrophic conditions; however, past research indicates that carbonate speleothem surfaces in these caves support diverse, predominantly heterotrophic prokaryotic communities. The current study applied a metagenomic approach to elucidate the community structure and potential energy dynamics of microbial communities, colonizing speleothem surfaces in Kartchner Caverns, a carbonate cave in semiarid, southeastern Arizona, USA. Manual inspection of a speleothem metagenome revealed a community genetically adapted to low-nutrient conditions with indications that a nitrogen-based primary production strategy is probable, including contributions from both Archaea and Bacteria . Genes for all six known CO 2 -fixation pathways were detected in the metagenome and RuBisCo genes representative of the Calvin–Benson–Bassham cycle were over-represented in Kartchner speleothem metagenomes relative to bulk soil, rhizosphere soil and deep-ocean communities. Intriguingly, quantitative PCR found Archaea to be significantly more abundant in the cave communities than in soils above the cave. MEtaGenome ANalyzer (MEGAN) analysis of speleothem metagenome sequence reads found Thaumarchaeota to be the third most abundant phylum in the community, and identified taxonomic associations to this phylum for indicator genes representative of multiple CO 2 -fixation pathways. The results revealed that this oligotrophic subterranean environment supports a unique chemoautotrophic microbial community with potentially novel nutrient cycling strategies. These strategies may provide key insights into other ecosystems dominated by oligotrophy, including aphotic subsurface soils or aquifers and photic systems such as arid deserts.
Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen
Background Traditional morphological and biological species concepts are difficult to apply to closely related, asexual taxa because of the lack of an active sexual phase and paucity of morphological characters. Phylogenetic species concepts such as genealogical concordance phylogenetic species recognition (GCPSR) have been extensively used; however, methods that incorporate gene tree uncertainty into species recognition may more accurately and objectively delineate species. Using a worldwide sample of Alternaria alternata sensu lato, causal agent of citrus brown spot, the evolutionary histories of four nuclear loci including an endo-polygalacturonase gene, two anonymous loci, and one microsatellite flanking region were estimated using the coalescent. Species boundaries were estimated using several approaches including those that incorporate uncertainty in gene genealogies when lineage sorting and non-reciprocal monophyly of gene trees is common. Results Coalescent analyses revealed three phylogenetic lineages strongly influenced by incomplete lineage sorting and recombination. Divergence of the citrus 2 lineage from the citrus 1 and citrus 3 lineages was supported at most loci. A consensus of species tree estimation methods supported two species of Alternaria causing citrus brown spot worldwide. Based on substitution rates at the endo-polygalacturonase locus, divergence of the citrus 2 and the 1 and 3 lineages was estimated to have occurred at least 5, 400 years before present, predating the human-mediated movement of citrus and associated pathogens out of SE Asia. Conclusions The number of Alternaria species identified as causing brown spot of citrus worldwide using morphological criteria has been overestimated. Little support was found for most of these morphospecies using quantitative species recognition approaches. Correct species delimitation of plant-pathogenic fungi is critical for understanding the evolution of pathogenicity, introductions of pathogens to new areas, and for regulating the movement of pathogens to enforce quarantines. This research shows that multilocus phylogenetic methods that allow for recombination and incomplete lineage sorting can be useful for the quantitative delimitation of asexual species that are morphologically indistinguishable. Two phylogenetic species of Alternaria were identified as causing citrus brown spot worldwide. Further research is needed to determine how these species were introduced worldwide, how they differ phenotypically and how these species are maintained.
Degradation of aflatoxin B1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus
Aflatoxins are highly carcinogenic secondary metabolites that can contaminate approximately 25% of crops and that cause or exacerbate multiple adverse health conditions, especially in Sub-Saharan Africa and South and Southeast Asia. Regulation and decontamination of aflatoxins in high exposure areas is lacking. Biological detoxification methods are promising because they are assumed to be cheaper and more environmentally friendly compared to chemical alternatives. White-rot fungi produce non-specific enzymes that are known to degrade aflatoxin in in situ and ex situ experiments. The aims of this study were to (1) decontaminate aflatoxin B 1 (AFB 1 ) in naturally contaminated maize with the edible, white-rot fungus Pleurotus ostreatus (oyster mushroom) using a solid-state fermentation system that followed standard cultivation techniques, and to (2) and to assess the risk of mutagenicity in the resulting breakdown products and mushrooms. Vegetative growth and yield characteristics of P. ostreatus were not inhibited by the presence of AFB 1 . AFB 1 was degraded by up to 94% by the Blue strain. No aflatoxin could be detected in P. ostreatus mushrooms produced from AFB 1 -contaminated maize. Moreover, the mutagenicity of breakdown products from the maize substrate, and reversion of breakdown products to the parent compound, were minimal. These results suggest that P. ostreatus significantly degrades AFB 1 in naturally contaminated maize under standard cultivation techniques to levels that are acceptable for some livestock fodder, and that using P. ostreatus to bioconvert crops into mushrooms can reduce AFB 1 -related losses.
Impact of Light Spectra and Substrate Composition on the Bioefficiency, Nutritional Content, and Morphology of Oyster Mushrooms
Mushrooms are commercially cultivated in controlled environment agriculture facilities in which the parameters of temperature, humidity, and CO2 are closely controlled. In contrast to plant production, variable lighting is generally not a parameter that mushroom producers utilize. In this study, P. ostreatus, the pearl oyster mushroom, was cultivated under one of three LED light spectra: blue (450 nm), red (625 nm), or white (broad spectrum) at an intensity of 5 μmol m−2 s−1. Substrates used for production consisted of a 70/30 mixture of straw/cottonseed or straw/mesquite bean pod, all of which were locally sourced in Arizona. Bioefficiency (BE), nutrient profile, and morphology were assessed post-production. Light spectra had no significant effect on BE, beta glucan, total amino acids, or total antioxidant content. However, red light exposure increased the number of caps per cluster by 197% and reduced cap diameter by 55%. The straw/cottonseed substrate significantly increased BE by 77% over the straw/mesquite substrate, increased levels of total protein by 9%, and increased levels of glutamic acid, arginine, and histidine by 11%, 24%, and 33% respectively. Interestingly, the straw/mesquite substrate resulted in a significant increase in total amino acid and beta glucan content over the straw/cottonseed substrate by 8 and 18%, respectively. These results illustrate how light spectra and substrate mixture can significantly impact nutritional value and production qualities of oyster mushrooms.
Profiling Bacterial Diversity and Taxonomic Composition on Speleothem Surfaces in Kartchner Caverns, AZ
Caves are relatively accessible subterranean habitats ideal for the study of subsurface microbial dynamics and metabolisms under oligotrophic, non-photosynthetic conditions. A 454-pyrotag analysis of the V6 region of the 16S rRNA gene was used to systematically evaluate the bacterial diversity of ten cave surfaces within Kartchner Caverns, a limestone cave. Results showed an average of 1,994 operational taxonomic units (97 % cutoff) per speleothem and a broad taxonomic diversity that included 21 phyla and 12 candidate phyla. Comparative analysis of speleothems within a single room of the cave revealed three distinct bacterial taxonomic profiles dominated by either Actinobacteria, Proteobacteria, or Acidobacteria. A gradient in observed species richness along the sampling transect revealed that the communities with lower diversity corresponded to those dominated by Actinobacteria while the more diverse communities were those dominated by Proteobacteria. A 16S rRNA gene clone library from one of the Actinobacteria-dominated speleothems identified clones with 99 % identity to chemoautotrophs and previously characterized oligotrophs, providing insights into potential energy dynamics supporting these communities. The robust analysis conducted for this study demonstrated a rich bacterial diversity on speleothem surfaces. Further, it was shown that seemingly comparable speleothems supported divergent phylogenetic profiles suggesting that these communities are very sensitive to subtle variations in nutritional inputs and environmental factors typifying speleothem surfaces in Kartchner Caverns.
Characterization of Alternaria isolates from the infectoria species-group and a new taxon from Arrhenatherum, Pseudoalternaria arrhenatheria sp. nov
The infectoria species-group within the genus Alternaria was originally conceived by Simmons in 1993 and was based upon common morphological characteristics that included the development of conidial chains with primary, secondary, and tertiary branching resulting in substantial three-dimensional complexity. These characters can overlap to varying degrees with numerous taxa in another Alternaria group, the alternata species-group, making species-group differentiation difficult. However, members of the infectoria species-group are also distinguished from other small-spored Alternaria species based upon colony characteristics that typically include white or nearly white floccose colonies on DRYES medium and clumps of sporulation islands on low sugar media such as V8 agar, PCA, and weak PDA. In addition, the infectoria species-group contains representatives that are known to produce teleomorphs (Lewia), whereas the members of the alternata species-group and other Alternaria species-groups are strictly asexual. In this study, an assemblage of isolates recovered from varied hosts from the west coast of the United States were examined based upon morphological characters and compared to previously described members of the infectoria species-group. These isolates and members of the infectoria species-group typically produce arachnoid vegetative hyphae with multiple primary conidiophores, whereas other small-spored Alternaria species produce primary conidiophores predominately directly from the agar surface. Additionally, molecular phylogenetic analyses resolved these isolates and members of the infectoria species-group as distinctly nested amongst other sexual taxa in Allewia (Embellisia anamorph) and Macrospora (Nimbya anamorph) and phylogenetically distant to asexual lineages of Alternaria. One taxon among these isolates was novel and clustered with the asexual A. rosae in a distinct clade basal to all other members of the infectoria species-group. A new genus is proposed, Pseudoalternaria gen. nov. and a new taxon is described, Pseudoalternaria arrhenatheria sp. nov.. Moreover, a second taxon is reclassified, Pseudoalternaria rosae comb. nov.
Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata
Previous phylogenetic analyses revealed that species within the genera Nimbya and Embellisia reside within a large monophyletic clade that also includes the genera Alternaria, Ulocladium, Undifilum, Sinomyces, and Crivellia with Stemphylium as the sister taxon. This study expands upon previous work by including many contemporary species of each genus and utilizes molecular and morphological characters to further examine relationships. Maximum parsimony and Bayesian analysis reveals that Nimbya is not a monophyletic genus but is split into two phylogenetically distant clades, which have different and distinct conidial morphologies. One of these clades resides completely within Alternaria. Phylogenetic analyses also reveals that Embellisia does not form a monophyletic genus but is split into four monophyletic lineages. Moreover, several species of Embellisia cluster individually with clades that are predominantly Alternaria, Ulocladium, or Stemphylium, yet these Embellisia spp. possess morphological characters that are diagnostically Embellisia. Thus, these data reveal that both Nimbya and Embellisia are polyphyletic as currently defined and taxonomic restructuring is necessary in order to resolve conflict between historical morphological and contemporary molecular-based phylogenies.