Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Pucek, J"
Sort by:
Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma
2022
A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self -modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.
Journal Article
Experimental study of wakefields driven by a self-modulating proton bunch in plasma
2020
We study experimentally the longitudinal and transverse wakefields driven by a highly relativistic proton bunch during self-modulation in plasma. We show that the wakefields’ growth and amplitude increase with increasing seed amplitude as well as with the proton bunch charge in the plasma. We study transverse wakefields using the maximum radius of the proton bunch distribution measured on a screen downstream from the plasma. We study longitudinal wakefields by externally injecting electrons and measuring their final energy. Measurements agree with trends predicted by theory and numerical simulations and validate our understanding of the development of self-modulation. Experiments were performed in the context of the Advanced Wakefield Experiment (AWAKE).
Journal Article
Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch
2021
Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron injection delay scans.
Journal Article
Plasma Light As Diagnostic For Wakefields Driven By Developing Self-Modulation Of A Long Particle Bunch
2024
We outline plans to use plasma light emitted as atomic lines radiation as a diagnostic for wakefields driven in plasma by a self-modulating, long proton bunch. This diagnostic is built into the design of a new vapor/plasma source that will also allow for imposing a plasma density step of various height at various locations. Such a step of a few percent in relative density placed at a location where the self-modulation process grows is predicted by numerical simulations to make the bunch drive wakefields with GV/m amplitude over hundreds of meters of plasma.
Experimental Observation of Motion of Ions in a Resonantly Driven Plasma Wakefield Accelerator
2024
We show experimentally that an effect of motion of ions, observed in a plasma-based accelerator, depends inversely on the plasma ion mass. The effect appears within a single wakefield event and manifests itself as a bunch tail, occurring only when sufficient motion of ions suppresses wakefields. Wakefields are driven resonantly by multiple bunches, and simulation results indicate that the ponderomotive force causes the motion of ions. In this case, the effect is also expected to depend on the amplitude of the wakefields, experimentally confirmed through variations in the drive bunch charge.
Development of the Self-Modulation Instability of a Relativistic Proton Bunch in Plasma
by
Verra, L
,
Gschwendtner, E
,
Muggli, P
in
Amplitudes
,
Electron density
,
Magnetohydrodynamic stability
2023
Self-modulation is a beam-plasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length, because the amplitude of the initial wakefields decreases. We show cases for which self-modulation does not develop and we introduce a simple model discussing the conditions for which it would not occur after any plasma length. Changing bunch size and plasma electron density also changes the growth rate of the instability. We discuss the impact of these results on the design of a particle accelerator based on the self-modulation instability seeded by a relativistic ionization front, such as the future upgrade of the AWAKE experiment.
Filamentation of a Relativistic Proton Bunch in Plasma
2023
We show in experiments that a long, underdense, relativistic proton bunch propagating in plasma undergoes the oblique instability, that we observe as filamentation. We determine a threshold value for the ratio between the bunch transverse size and plasma skin depth for the instability to occur. At the threshold, the outcome of the experiment alternates between filamentation and self-modulation instability (evidenced by longitudinal modulation into microbunches). Time-resolved images of the bunch density distribution reveal that filamentation grows to an observable level late along the bunch, confirming the spatio-temporal nature of the instability. We calculate the amplitude of the magnetic field generated in the plasma by the instability and show that the associated magnetic energy increases with plasma density.
Analysis of Proton Bunch Parameters in the AWAKE Experiment
2021
A precise characterization of the incoming proton bunch parameters is required to accurately simulate the self-modulation process in the Advanced Wakefield Experiment (AWAKE). This paper presents an analysis of the parameters of the incoming proton bunches used in the later stages of the AWAKE Run 1 data-taking period. The transverse structure of the bunch is observed at multiple positions along the beamline using scintillating or optical transition radiation screens. The parameters of a model that describes the bunch transverse dimensions and divergence are fitted to represent the observed data using Bayesian inference. The analysis is tested on simulated data and then applied to the experimental data.
Simulation and Experimental Study of Proton Bunch Self-Modulation in Plasma with Linear Density Gradients
2021
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported in arXiv:2007.14894v2: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement.
Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma
2020
We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude (\\(\\ge(4.1\\pm0.4)\\) MV/m), the phase of the modulation along the bunch is reproducible from event to event, with 3 to 7% (of 2\\(\\pi\\)) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated.