Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Pucheta-Martinez, Encarna"
Sort by:
Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase
Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.
Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics
Due to its inhibition of the Abl kinase domain in the BCR-ABL fusion protein, imatinib is strikingly effective in the initial stage of chronic myeloid leukemia with more than 90% of the patients showing complete remission. However, as in the case of most targeted anti-cancer therapies, the emergence of drug resistance is a serious concern. Several drug-resistant mutations affecting the catalytic domain of Abl and other tyrosine kinases are now known. But, despite their importance and the adverse effect that they have on the prognosis of the cancer patients harboring them, the molecular mechanism of these mutations is still debated. Here by using long molecular dynamics simulations and large-scale free energy calculations complemented by in vitro mutagenesis and microcalorimetry experiments, we model the effect of several widespread drug-resistant mutations of Abl. By comparing the conformational free energy landscape of the mutants with those of the wild-type tyrosine kinases we clarify their mode of action. It involves significant and complex changes in the inactive-to-active dynamics and entropy/enthalpy balance of two functional elements: the activation-loop and the conserved DFG motif. What is more the T315I gatekeeper mutant has a significant impact on the binding mechanism itself and on the binding kinetics.
Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome
WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function.
An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase
Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.
Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics
Due to its inhibition of the Abl kinase domain in the BCR-ABL fusion protein, imatinib is strikingly effective in the initial stage of chronic myeloid leukemia with more than 90% of the patients showing complete remission. However, as in the case of most targeted anti-cancer therapies, the emergence of drug resistance is a serious concern. Several drug-resistant mutations affecting the catalytic domain of Abl and other tyrosine kinases are now known. But, despite their importance and the adverse effect that they have on the prognosis of the cancer patients harboring them, the molecular mechanism of these mutations is still debated. Here by using long molecular dynamics simulations and large-scale free energy calculations complemented by in vitro mutagenesis and microcalorimetry experiments, we model the effect of several widespread drug-resistant mutations of Abl. By comparing the conformational free energy landscape of the mutants with those of the wild-type tyrosine kinases we clarify their mode of action. It involves significant and complex changes in the inactive-to-active dynamics and entropy/enthalpy balance of two functional elements: the activation-loop and the conserved DFG motif. What is more the T315I gatekeeper mutant has a significant impact on the binding mechanism itself and on the binding kinetics.
Understanding molecular mechanisms of protein kinases regulation and inhibition
Protein kinases (PKs) play a key role in regulating cellular processes. Kinase dysfunction can lead to disease, thus kinases are important targets for drug design and a fundamental class of pharmacological targets for anti-cancer therapy. Among protein kinases, B-Raf and c-Src are remarkably interesting as anticancer drug targets because of their important role in cancer onset (B-Raf) and progression (c-Src). This thesis is mainly focused on the characterization of the molecular mechanism at the basis of the regulation and inhibition of these remarkable PKs. By using nuclear magnetic resonance (NMR) and molecular dynamics simulations (MD) we have studied in great details their activation dynamics, their inhibition and the effect of clinically-relevant oncogenic mutations on their structure and dynamics. C-Scr was the first viral oncogenic protein discovered, is involved in metastasis and is mutated in 50% of colon, liver, lung, breast and pancreas tumours. Upon phosphorylation, various conserved structural elements, including the activation loop, switch from an inactive to an active form able to bind ATP and phosphorylate a substrate in a cellular signalling process leading to cell replication. In this thesis, we will discuss how phosphorylation drastically changes the dynamics of the C-lobe in c-Src by NMR analysis, a phenomenon not easily accessible by static crystallographic studies. The second part of the thesis will be focused on B-Raf, a protein serine/threonine kinase. B-Raf kinase is a key target for the treatment of melanoma, since a single mutation (V600E) is found in more than 50% of all malignant melanomas. Despite their importance, the molecular mechanisms explaining the increased kinase activity in this mutant remains elusive. As kinase activity is often tightly regulated by one or more conformational transitions between an active and an inactive state, which are difficult to be observed experimentally, molecular dynamics simulations are often useful to interpret the experimental results. In this project, we will examine the mechanism by which the V600E mutation enhances the activity of the B-Raf monomer. We will also employ a combination of MD techniques with NMR experiments to fully map the effects of the mutation on the conformational landscape of B-Raf. An understanding at the atomic level of the mechanisms leading to their activation and inhibition is an extremely important goal in anti-cancer drug discovery. A better understanding of these proteins' mechanisms might lead to more potent and less toxic drugs. Finally, I report on the studies of a much small domain often associated with PKs in regulatory pathways: the WW domain. By using a combination of MD simulations and NMR, we have characterized the effect of a pathogenic mutation on its folding landscape.