Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
129
result(s) for
"Puddu, R."
Sort by:
QUBIC Experiment Toward the First Light
2022
The
Q
&
U
Bolometric Interferometer for Cosmology (QUBIC) is a cosmology experiment that aims to measure the B-mode polarization of the cosmic microwave background (CMB). Measurements of the primordial B-mode pattern of the CMB polarization are in fact among the most exciting goals in cosmology as it would allow testing of the inflationary paradigm. Many experiments are attempting to measure the B-modes, from the ground and the stratosphere, using imaging Stokes polarimeters. The QUBIC collaboration developed an innovative concept to measure CMB polarization using bolometric interferometry. This approach mixes the high sensitivity of bolometric detectors with the accurate control of systematics due to the interferometric layout of the instrument. We present the calibration results for the Technological Demonstrator, before its commissioning in the Argentinian observing site and preparation for first light.
Journal Article
TES Bolometer Arrays for the QUBIC B-Mode CMB Experiment
2020
QUBIC is a ground-based experiment aiming to measure the B-mode polarization of the cosmic microwave background. The developed instrument is an innovative two-frequency band bolometric interferometer that will operate at 300 mK with NbSi TES arrays. In this paper, we describe the fabrication process of the detectors.
Journal Article
QUBIC: Using NbSi TESs with a Bolometric Interferometer to Characterize the Polarization of the CMB
by
Bernard, J.-Ph
,
Nati, F.
,
Romero, G. E.
in
Application specific integrated circuits
,
Astrophysics
,
Bolometers
2020
Q & U Bolometric Interferometer for Cosmology (QUBIC) is an international ground-based experiment dedicated in the measurement of the polarized fluctuations of the Cosmic Microwave Background. It is based on bolometric interferometry, an original detection technique which combines the immunity to systematic effects of an interferometer with the sensitivity of low-temperature incoherent detectors. QUBIC will be deployed in Argentina, at the Alto Chorrillos mountain site near San Antonio de los Cobres, in the Salta Province. The QUBIC detection chain consists in 2048 NbSi transition edge sensors (TESs) cooled to 350 mK.The voltage-biased TESs are read out with time domain multiplexing based on Superconducting QUantum Interference Devices at 1 K and a novel SiGe application-specific integrated circuit at 60 K allowing to reach an unprecedented multiplexing factor equal to 128. The QUBIC experiment is currently being characterized in the laboratory with a reduced number of detectors before upgrading to the full instrument. I will present the last results of this characterization phase with a focus on the detectors and readout system.
Journal Article
QUBIC: The Q & U Bolometric Interferometer for Cosmology
by
Bernard, J.-Ph
,
Nati, F.
,
Romero, G. E.
in
Big Bang theory
,
Bolometers
,
Characterization and Evaluation of Materials
2020
The Q & U Bolometric Interferometer for Cosmology, QUBIC, is an innovative experiment designed to measure the polarization of the cosmic microwave background and in particular the signature left therein by the inflationary expansion of the Universe. The expected signal is extremely faint; thus, extreme sensitivity and systematic control are necessary in order to attempt this measurement. QUBIC addresses these requirements using an innovative approach combining the sensitivity of transition-edge sensor cryogenic bolometers, with the deep control of systematics characteristic of interferometers. This makes QUBIC unique with respect to others' classical imagers experiments devoted to the CMB polarization. In this contribution, we report a description of the QUBIC instrument including recent achievements and the demonstration of the bolometric interferometry performed in laboratory. QUBIC will be deployed at the observation site in Alto Chorrillos, in Argentina, at the end of 2019.
Journal Article
The QUBIC instrument for CMB polarization measurements
2020
Measurements of cosmic microwave background (CMB) polarization may reveal the presence of a background of gravitational waves produced during cosmic inflation, providing thus a test of inflationary models. The Q&U Bolometric Interferometer for Cosmology (QUBIC) is an experiment designed to measure the CMB polarization. It is based on the novel concept of bolometric interferometry, which combines the sensitivity of bolometric detectors with the properties of beam synthesis and control of calibration offered by interferometers. To modulate and extract the input polarized signal of the CMB, QUBIC exploits Stokes polarimetry based on a rotating half-wave plate (HWP). In this work, we illustrate the design of the QUBIC instrument, focusing on the polarization modulation system, and we present preliminary results of beam calibrations and the performance of the HWP rotator at 300 K.
Journal Article
Multi-scale assessment of the risk of soil salinization in an area of south-eastern Sardinia (Italy)
2008
The assessment and mapping of the risk of soil salinization can contribute to sustainable land planning aimed at mitigating soil degradation and increasing crop production. A probabilistic approach, based on multivariate geostatistics was used to model the spatial variation of soil salinization risk at the landscape scale and to delineate the areas at high risk. The study site is a citrus growing area in south-eastern Sardinia (Italy). Electrical conductivity (EC
e
), exchangeable sodium percentage (ESP), pH and ‘total clay + fine silt content’ (FIN), were measured in the topsoil (0–40 cm). The method requires indicator coding, which transforms measured data values into a binary variable according to critical thresholds. These latter were set to: 4 dS m
−1
for EC
e
, 10% for ESP, 8 for pH, and 40% for ‘total clay + fine silt content’. To determine the probability of exceeding these critical values, multi-collocated indicator cokriging was used. Factorial kriging was also applied to identify one regionalized factor that summarizes the effects of the selected variables on soil salinization. Maps of each soil indicator and regionalized factor were produced to show the areas at risk of salinization. The results are valuable for planning the management of salinity.
Journal Article
Fetal HLA typing in β thalassaemia: implications for haemopoietic stem-cell transplantation
by
Argiolu, Francesca
,
Rosatelli, Maria Cristina
,
Cao, Antonio
in
beta-Thalassemia - diagnosis
,
beta-Thalassemia - immunology
,
beta-Thalassemia - therapy
2003
Stem-cell transplantation can cure β thalassaemia. We aimed to assess whether fetal HLA typing done early in the pregnancy of couples who were at risk of β thalassaemia could provide an alternative to pregnancy termination if the prospect of a bone-marrow transplantation from a family member was available. In our clinic in Sardinia, we did fetal HLA typing for 49 couples at risk of having a baby with β thalassaemia. Two affected children were born and successfully received a transplantation from a family donor. Five non-affected fetuses were HLA compatible with an affected sibling and their cord blood was harvested for a future transplantation.
Journal Article
CCAT-prime Collaboration: Science Goals and Forecasts with Prime-Cam on the Fred Young Submillimeter Telescope
2022
We present a detailed overview of the science goals and predictions for the Prime-Cam direct detection camera/spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6-m aperture submillimeter telescope being built (first light in mid-2024) by an international consortium of institutions led by Cornell University and sited at more than 5600 meters on Cerro Chajnantor in northern Chile. Prime-Cam is one of two instruments planned for FYST and will provide unprecedented spectroscopic and broadband measurement capabilities to address important astrophysical questions ranging from Big Bang cosmology through reionization and the formation of the first galaxies to star formation within our own Milky Way galaxy. Prime-Cam on the FYST will have a mapping speed that is over ten times greater than existing and near-term facilities for high-redshift science and broadband polarimetric imaging at frequencies above 300 GHz. We describe details of the science program enabled by this system and our preliminary survey strategies.
QUBIC VII: The feedhorn-switch system of the technological demonstrator
2022
We present the design, manufacturing and performance of the horn-switch system developed for the technological demonstrator of QUBIC (the \\(Q\\)\\&\\(U\\) Bolometric Interferometer for Cosmology). This system is constituted of 64 back-to-back dual-band (150\\,GHz and 220\\,GHz) corrugated feed-horns interspersed with mechanical switches used to select desired baselines during the instrument self-calibration. We manufactured the horns in aluminum platelets milled by photo-chemical etching and mechanically tightened with screws. The switches are based on steel blades that open and close the wave-guide between the back-to-back horns and are operated by miniaturized electromagnets. We also show the current development status of the feedhorn-switch system for the QUBIC full instrument, based on an array of 400 horn-switch assemblies.
QUBIC II: Spectro-Polarimetry with Bolometric Interferometry
2022
Bolometric interferometry is a novel technique that has the ability to perform spectral imaging. A bolometric interferometer observes the sky in a wide frequency band and can reconstruct sky maps in several sub-bands within the physical band in post-processing of the data. This provides a powerful spectral method to discriminate between the cosmic microwave background (CMB) and astrophysical foregrounds. In this paper, the methodology is illustrated with examples based on the Q \\& U Bolometric Interferometer for Cosmology (QUBIC) which is a ground-based instrument designed to measure the B-mode polarization of the sky at millimeter wavelengths. We consider the specific cases of point source reconstruction and Galactic dust mapping and we characterize the point spread function as a function of frequency. We study the noise properties of spectral imaging, especially the correlations between sub-bands, using end-to-end simulations together with a fast noise simulator. We conclude showing that spectral imaging performance are nearly optimal up to five sub-bands in the case of QUBIC.