Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Purcell, Mariel"
Sort by:
Understanding and modelling the economic impact of spinal cord injuries in the United Kingdom
Study designEconomic modelling analysis.ObjectivesTo determine lifetime direct and indirect costs from initial hospitalisation of all expected new traumatic and non-traumatic spinal cord injuries (SCI) over 12 months.SettingUnited Kingdom (UK).MethodsIncidence-based approach to assessing costs from a societal perspective, including immediate and ongoing health, rehabilitation and long-term care directly attributable to SCI, as well as aids and adaptations, unpaid informal care and participation in employment. The model accounts for differences in injury severity, gender, age at onset and life expectancy.ResultsLifetime costs for an expected 1270 new cases of SCI per annum conservatively estimated as £1.43 billion (2016 prices). This equates to a mean £1.12 million (median £0.72 million) per SCI case, ranging from £0.47 million (median £0.40 million) for an AIS grade D injury to £1.87 million (median £1.95 million) for tetraplegia AIS A–C grade injuries. Seventy-one percent of lifetime costs potentially are paid by the public purse with remaining costs due to reduced employment and carer time.ConclusionsDespite the magnitude of costs, and being comparable with international estimates, this first analysis of SCI costs in the UK is likely to be conservative. Findings are particularly sensitive to the level and costs of long-term home and residential care. The analysis demonstrates how modelling can be used to highlight economic impacts of SCI rapidly to policymakers, illustrate how changes in future patterns of injury influence costs and help inform future economic evaluations of actions to prevent and/or reduce the impact of SCIs.
EEG Correlates of Self-Managed Neurofeedback Treatment of Central Neuropathic Pain in Chronic Spinal Cord Injury
Neurofeedback (NFB) is a neuromodulatory technique that enables voluntary modulation of brain activity in order to treat neurological condition, such as central neuropathic pain (CNP). A distinctive feature of this technique is that it actively involves participants in the therapy. In this feasibility study, we present results of participant self-managed NFB treatment of CNP. Fifteen chronic spinal cord injured (SCI) participants (13M, 2F), with chronic CNP equal or greater than 4 on the Visual Numeric Scale, took part in the study. After initial training in hospital (up to 4 sessions), they practiced NF at home, on average 2-3 times a week, over a period of several weeks (min 4, max 20). The NFB protocol consisted of upregulating the alpha (9-12 Hz) and downregulating the theta (4-8 Hz) and the higher beta band (20-30 Hz) power from electrode location C4, for 30 min. The output measures were pain before and after NFB, EEG before and during NFB and pain questionnaires. We analyzed EEG results and show NFB strategies based on the Power Spectrum Density of each single participant. Twelve participants achieved statistically significant reduction in pain and in eight participants this reduction was clinically significant (larger than 30%). The most successfully regulated frequency band during NFB was alpha. However, most participants upregulated their individual alpha band, that had an average dominant frequency at α = 7.6 ± 0.8 Hz (median 8 Hz) that is lower than the average of the general population, which is around 10 Hz. Ten out of fifteen participants significantly upregulated their individual alpha power (α ± 2 Hz) as compared to 4 participants who upregulated the power in the fixed alpha band (8-12 Hz). Eight out of the twelve participants who achieved a significant reduction of pain, significantly upregulated their individual alpha band power. There was a significantly larger increase in alpha power ( < 0.0001) and decrease of theta power ( < 0.04) in participant specific rather than in fixed frequency bands. Neurofeedback is a neuromodulatory technique that gives participants control over their pain and can be self-administered at home. Regulation of individual frequency band was related to a significant reduction in pain.
Effective Connectivity in Spinal Cord Injury-Induced Neuropathic Pain
Aim: The aim of this study was to differentiate the effects of spinal cord injury (SCI) and central neuropathic pain (CNP) on effective connectivity during motor imagery of legs, where CNP is typically experienced. Methods: Multichannel EEG was recorded during motor imagery of the legs in 3 groups of people: able-bodied (N = 10), SCI with existing CNP (N = 10), and SCI with no CNP (N = 20). The last group was followed up for 6 months to check for the onset of CNP. Source reconstruction was performed to obtain cortical activity in 17 areas spanning sensorimotor regions and pain matrix. Effective connectivity was calculated using the directed transfer function in 4 frequency bands and compared between groups. Results: A total of 50% of the SCI group with no CNP developed CNP later. Statistically significant differences in effective connectivity were found between all groups. The differences between groups were not dependent on the frequency band. Outflows from the supplementary motor area were greater for the able-bodied group while the outflows from the secondary somatosensory cortex were greater for the SCI groups. The group with existing CNP showed the least differences from the able-bodied group, appearing to reverse the effects of SCI. The connectivities involving the pain matrix were different between able-bodied and SCI groups irrespective of CNP status, indicating their involvement in motor networks generally. Significance: The study findings might help guide therapeutic interventions targeted at the brain for CNP alleviation as well as motor recovery post SCI.
On the way home: a BCI-FES hand therapy self-managed by sub-acute SCI participants and their caregivers: a usability study
Background Regaining hand function is the top priority for people with tetraplegia, however access to specialised therapy outwith clinics is limited. Here we present a system for hand therapy based on brain-computer interface (BCI) which uses a consumer grade electroencephalography (EEG) device combined with functional electrical stimulation (FES), and evaluate its usability among occupational therapists (OTs) and people with spinal cord injury (SCI) and their family members. Methods Users : Eight people with sub-acute SCI (6 M, 2F, age 55.4 ± 15.6) and their caregivers (3 M, 5F, age 45.3 ± 14.3); four OTs (4F, age 42.3 ± 9.8).  User Activity : Researchers trained OTs; OTs subsequently taught caregivers to set up the system for the people with SCI to perform hand therapy. Hand therapy consisted of attempted movement (AM) of one hand to lower the power of EEG sensory-motor rhythm in the 8-12 Hz band and thereby activate FES which induced wrist flexion and extension.  Technology : Consumer grade wearable EEG, multichannel FES, custom made BCI application. Location : Research space within hospital.  Evaluation : donning times, BCI accuracy, BCI and FES parameter repeatability, questionnaires, focus groups and interviews. Results Effectiveness : The BCI accuracy was 70–90%. Efficiency : Median donning times decreased from 40.5 min for initial session to 27 min during last training session (N = 7), dropping to 14 min on the last self-managed session (N = 3). BCI and FES parameters were stable from session to session.  Satisfaction : Mean satisfaction with the system among SCI users and caregivers was 3.68 ± 0.81 (max 5) as measured by QUEST questionnaire. Main facilitators for implementing BCI-FES technology were “seeing hand moving”, “doing something useful for the loved ones”, good level of computer literacy (people with SCI and caregivers), “active engagement in therapy” (OT), while main barriers were technical complexity of setup (all groups) and “lack of clinical evidence” (OT). Conclusion BCI-FES has potential to be used as at home hand therapy by people with SCI or stroke, provided it is easy to use and support is provided. Transfer of knowledge of operating BCI is possible from researchers to therapists to users and caregivers. Trial registration Registered with NHS GG&C on December 6th 2017; clinicaltrials.gov reference number NCT03257982, url: https://clinicaltrials.gov/ct2/show/NCT03257982 .
Markers of Central Neuropathic Pain in Higuchi Fractal Analysis of EEG Signals From People With Spinal Cord Injury
Central neuropathic pain (CNP) negatively impacts the quality of life in a large proportion of people with spinal cord injury (SCI). With no cure at present, it is crucial to improve our understanding of how CNP manifests, to develop diagnostic biomarkers for drug development, and to explore prognostic biomarkers for personalised therapy. Previous work has found early evidence of diagnostic and prognostic markers analysing Electroencephalogram (EEG) oscillatory features. In this paper, we explore whether non-linear non-oscillatory EEG features, specifically Higuchi Fractal Dimension (HFD), can be used as prognostic biomarkers to increase the repertoire of available analyses on the EEG of people with subacute SCI, where having both linear and non-linear features for classifying pain may ultimately lead to higher classification accuracy and an intrinsically transferable classifier. We focus on EEG recorded during imagined movement because of the known relation between the motor cortex over-activity and CNP. Analyses were performed on two existing datasets. The first dataset consists of EEG recordings from able-bodied participants ( N = 10), participants with chronic SCI and chronic CNP ( N = 10), and participants with chronic SCI and no CNP ( N = 10). We tested for statistically significant differences in HFD across all pairs of groups using bootstrapping, and found significant differences between all pairs of groups at multiple electrode locations. The second dataset consists of EEG recordings from participants with subacute SCI and no CNP ( N = 20). They were followed-up 6 months post recording to test for CNP, at which point ( N = 10) participants had developed CNP and ( N = 10) participants had not developed CNP. We tested for statistically significant differences in HFD between these two groups using bootstrapping and, encouragingly, also found significant differences at multiple electrode locations. Transferable machine learning classifiers achieved over 80% accuracy discriminating between groups of participants with chronic SCI based on only a single EEG channel as input. The most significant finding is that future and chronic CNP share common features and as a result, the same classifier can be used for both. This sheds new light on pain chronification by showing that frontal areas, involved in the affective aspects of pain and believed to be influenced by long-standing pain, are affected in a much earlier phase of pain development.
A pressure monitoring approach for pressure ulcer prevention
Background A pressure ulcer (PU) is a debilitating condition that disproportionately affects people with impaired mobility. PUs facilitate tissue damage due to prolonged unrelieved pressure, degrading quality of life with a considerable socio-economic impact. While rapid treatment is crucial, an effective  prevention strategy may help avoid the development of PUs altogether. While pressure monitoring is currently used in PU prevention, available monitoring approaches are not formalised and do not appropriately account for accumulation and relief of the effect of an applied pressure over a prolonged duration. The aim of this study was to define an approach that incorporates the accumulation and relief of an applied load to enable continuous pressure monitoring. Results A tunable continuous pressure magnitude and duration monitoring approach that can account for accumulated damaging effect of an applied pressure and pressure relief over a prolonged period is proposed. Unlike classic pressure monitoring approaches, the presented method provides ongoing indication of the net impact of a load during and after loading. Conclusions The tunable continuous pressure magnitude and duration monitoring approach proposed here may further development towards formalised pressure monitoring approaches that aim to provide information on the risk of PU formation in real-time.
Electroencephalography Longitudinal Markers of Central Neuropathic Pain Intensity in Spinal Cord Injury: A Home-Based Pilot Study
Background: It is well known from cross-sectional studies that pain intensity affects brain activity as measured by electroencephalography (EEG) in people with neuropathic pain (NP). However, quantitative characterisation is scarce. Methods: In this longitudinal study, ten people with spinal cord injury-related NP recorded their home EEG activity ten days before and after taking medications over a period of several weeks. Results: The reduction in pain due to medications was accompanied by changes in the resting state EEG and its reactivity to eyes opening (EO) and closing (EC). There was a significant positive correlation between the frontal theta band and the intensity of pain (visual numerical scale) pre-medication (p = 0.007, Pearson R = 0.29) and theta, alpha, and lower beta (6–15 Hz) band power and the intensity of pain after post-medication over the frontal, central, and parietal cortices. Reactivity had a negative correlation with pain intensity at all locations and frequency bands and showed similar behaviour in wider frequency bands like 8–15 Hz at the occipital cortex and 2–12 Hz at the frontal cortex. Conclusions: EEG could be used to detect the intensity of NP to serve as a surrogate or pharmacodynamic marker.
Generalisation of EEG-Based Pain Biomarker Classification for Predicting Central Neuropathic Pain in Subacute Spinal Cord Injury
Background: The objective was to test the generalisability of electroencephalography (EEG) markers of future pain using two independent datasets. Methods: Datasets, A [N = 20] and B [N = 35], were collected from participants with subacute spinal cord injury who did not have neuropathic pain at the time of recording. In both datasets, some participants developed pain within six months, (PDP) will others did not (PNP). EEG features were extracted based on either band power or Higuchi fractal dimension (HFD). Three levels of generalisability were tested: (1) classification PDP vs. PNP in datasets A and B separately; (2) classification between groups in datasets A and B together; and (3) classification where one dataset (A or B) was used for training and testing, and the other for validation. A novel normalisation method was applied to HFD features. Results: Training and testing of individual datasets achieved classification accuracies of >80% using either feature set, and classification of joint datasets (A and B) achieved a maximum accuracy of 86.4% (HFD, support vector machine (SVM)). With normalisation and feature reduction (principal components), the validation accuracy was 66.6%. Conclusions: An SVM classifier with HFD features showed the best robustness, and normalisation improved the accuracy of predicting future neuropathic pain well above the chance level.
Recovery after traumatic thoracic- and lumbar spinal cord injury: the neurological level of injury matters
Study designMulticenter prospective cohort.ObjectiveTo discern neurological- and functional recovery in patients with a traumatic thoracic spinal cord injury (TSCI), conus medullaris syndrome (CMS), and cauda equina syndrome (CES).SettingSpecialized spinal cord injury centers in Europe.MethodLower extremity motor score (LEMS) and spinal cord independent measure (SCIM) scores from patients with traumatic TSCI, CMS, and CES were extracted from the EMSCI database. Scores from admittance and during rehabilitation at 1, 3, 6, and 12 months were compared. Linear mixed models were used to statistically analyse differences in outcome, which were corrected for the ASIA Impairment Scale (AIS) in the acute phase.ResultsData from 1573 individuals were analysed. Except for the LEMS in patients with a CES AIS A, LEMS, and SCIM significantly improved over time for patients with a TSCI, CMS, and CES. Irrespectively of the AIS score, recovery in 12 months after trauma as measured by the LEMS showed a statistically significant difference between patients with a TSCI, CMS, and CES. Analysis of SCIM score showed no difference between patients with TSCI, CMS, or CES.ConclusionDifference in recovery between patients with a traumatic paraplegia is based on neurological (motor) recovery. Regardless the ceiling effect in CES patients, patients with a mixed upper and lower motor neuron syndrome (CMS) showed a better recovery compared with patients with a upper motor neuron syndrome (TSCI). These findings enable stratifications of patients with paraplegia according to the level and severity of SCI.
Investigation of robotic-assisted tilt-table therapy for early-stage spinal cord injury rehabilitation
Damage to the spinal cord compromises motor function and sensation below the level of injury, resulting in paralysis and progressive secondary health complications. Inactivity and reduced energy requirements result in reduced cardiopulmonary fitness and an increased risk of coronary heart disease and cardiovascular complications. These risks may be minimized through regular physical activity. It is proposed that such activity should begin at the earliest possible time point after injury, before extensive neuromuscular degeneration has occurred. Robotic-assisted tilt-table therapy may be used during early-stage spinal cord injury (SCI) to facilitate stepping training, before orthostatic stability has been achieved. This study investigates whether such a stimulus may be used to maintain pulmonary and coronary health by describing the acute responses of patients with early-stage (<1 yr) motor-complete SCI (cSCI) and motor-incomplete SCI (iSCI) to passive, active, and electrically stimulated robotic-assisted stepping. Active participation was found to elicit an increased response from iSCI patients. The addition of electrical stimulation did not consistently elicit further increases. Extensive muscle atrophy was found to have occurred in those patients with cSCI, thereby limiting the potential effectiveness of electrical stimulation. Active participation in robotic-assisted tilt-table therapy may be used to improve cardiopulmonary fitness in iSCI patients if implemented as part of a regular training program.