Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Py, Béatrice"
Sort by:
Building Fe–S proteins: bacterial strategies
Key Points Fe–S clusters are among the most conserved cofactors in prokaryotes and eukaryotes. Fe–S proteins participate in a wide array of cellular processes, from metabolism to gene regulation and DNA replication. Fe–S clusters are highly unstable and, upon destabilization, they can lead to oxidative stress via Fenton chemistry. Dedicated systems have therefore evolved for building, protecting and inserting these clusters into apoproteins. The components required for Fe–S cluster biogenesis have been identified in the model systems Escherichia coli , Saccharomyces cerevisiae and Arabidopsis thaliana and exhibit structural and functional homologies. They constitute the so-called Fe–S cluster (Isc) and sulphur mobilization (Suf) systems. In eukaryotes, the Isc system is located in the mitochondria and the Suf system in chloroplasts. E. coli also has both systems. Both in vitro and in vivo analyses have revealed that Fe–S biogenesis comprises two steps: a 'building' step, during which iron and sulphur are collected and assembled into a cluster, and a 'delivery' step, during which the cluster is transported to the apoprotein targets. The origin of the sulphur is L -cysteine, and the way in which cysteine desulphurase mobilizes sulphur for Fe–S cluster formation is well understood. The origin of the iron remains unclear, and several sources are likely to be used. A key step in Fe–S cluster biogenesis is catalysed by a scaffold protein, which can accept both iron and sulphur, allowing them to form a cluster that is eventually transferred either to downstream components in the Fe–S cluster biogenesis process or, under certain conditions, directly to apoproteins. In vivo approaches have revealed the existence of a complex trafficking step, in which ready-made clusters can use different routes to reach their final targets. So-called A-type transporters (ATC) are required for this step. Genetic studies in E. coli allowed the existence of seemingly redundant ATCs to be rationalized: environmental conditions, gene regulation and preferential partnerships seem to control the route that a cluster takes from its site of building to its final destination. Several Fe–S cluster biogenesis factors that do not belong to either the Isc system or the Suf system have been identified; their roles and how they cooperate with the Isc and Suf systems remain to be clarified. Fe–S proteins participate in a wide array of cellular processes, from metabolism to gene regulation and DNA replication. Here, Py and Barras discuss the basic requirements for a bacterial cell to build and insert Fe–S clusters into apoproteins and summarize our current knowledge and understanding of this process in vivo . The broad range of cellular activities carried out by Fe–S proteins means that they have a central role in the life of most organisms. At the interface between biology and chemistry, studies of bacterial Fe–S protein biogenesis have taken advantage of the specific approaches of each field and have begun to reveal the molecular mechanisms involved. The multiprotein systems that are required to build Fe–S proteins have been identified, but the in vivo roles of some of the components remain to be clarified. The way in which cellular Fe–S cluster trafficking pathways are organized remains a key issue for future studies.
Mrp and SufT, Two Bacterial Homologs of Eukaryotic CIA Factors Involved in Fe-S Clusters Biogenesis
Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play important roles in respiration, photosynthesis, nitrogen fixation, regulation of gene expression, and numerous metabolic pathways, including biosynthesis of other protein cofactors. Assembly of iron and sulfur atoms into a cluster, followed by its insertion into the polypeptide chain, is a complex process ensured by multiproteic systems. Through evolution, eukaryotes have acquired two Fe-S protein biogenesis systems by endosymbiosis from bacteria. These systems, ISC and SUF, are compartmentalized in mitochondria and plastids, respectively. The eukaryotic Fe-S protein biogenesis system (CIA) is dedicated to the biogenesis of cytosolic and nuclear Fe-S proteins. While the CIA system is absent in bacteria, at least two of its components share homologies with bacterial Fe-S protein biogenesis factors, Mrp and SufT. Here, we provide an overview of the role of Mrp and SufT in Fe-S protein biogenesis in bacteria, aiming to put forward specific but also common features with their eukaryotic CIA counterparts.
Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host
Iron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S -adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli . Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways.
Species-specific activity of antibacterial drug combinations
The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine 1 , 2 . Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens— Escherichia coli , Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa —to identify general principles for antibacterial drug combinations and understand their potential. Despite the phylogenetic relatedness of the three species, more than 70% of the drug–drug interactions that we detected are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs that target different cellular processes, whereas synergies are more conserved and are enriched in drugs that target the same process. We provide mechanistic insights into this dichotomy and further dissect the interactions of the food additive vanillin. Finally, we demonstrate that several synergies are effective against multi-drug-resistant clinical isolates in vitro and during infections of the larvae of the greater wax moth Galleria mellonella , with one reverting resistance to the last-resort antibiotic colistin. Screening pairwise combinations of antibiotics and other drugs against three bacterial pathogens reveals that antagonistic and synergistic drug–drug interactions are specific to microbial species and strains.
Turning Escherichia coli into a Frataxin-Dependent Organism
Fe-S bound proteins are ubiquitous and contribute to most basic cellular processes. A defect in the ISC components catalyzing Fe-S cluster biogenesis leads to drastic phenotypes in both eukaryotes and prokaryotes. In this context, the Frataxin protein (FXN) stands out as an exception. In eukaryotes, a defect in FXN results in severe defects in Fe-S cluster biogenesis, and in humans, this is associated with Friedreich's ataxia, a neurodegenerative disease. In contrast, prokaryotes deficient in the FXN homolog CyaY are fully viable, despite the clear involvement of CyaY in ISC-catalyzed Fe-S cluster formation. The molecular basis of the differing importance in the contribution of FXN remains enigmatic. Here, we have demonstrated that a single mutation in the scaffold protein IscU rendered E. coli viability strictly dependent upon a functional CyaY. Remarkably, this mutation changed an Ile residue, conserved in prokaryotes at position 108, into a Met residue, conserved in eukaryotes. We found that in the double mutant IscUIM δcyaY, the ISC pathway was completely abolished, becoming equivalent to the δiscU deletion strain and recapitulating the drastic phenotype caused by FXN deletion in eukaryotes. Biochemical analyses of the \"eukaryotic-like\" IscUIM scaffold revealed that it exhibited a reduced capacity to form Fe-S clusters. Finally, bioinformatic studies of prokaryotic IscU proteins allowed us to trace back the source of FXN-dependency as it occurs in present-day eukaryotes. We propose an evolutionary scenario in which the current mitochondrial Isu proteins originated from the IscUIM version present in the ancestor of the Rickettsiae. Subsequent acquisition of SUF, the second Fe-S cluster biogenesis system, in bacteria, was accompanied by diminished contribution of CyaY in prokaryotic Fe-S cluster biogenesis, and increased tolerance to change in the amino acid present at the 108th position of the scaffold.
The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment
Ramlibacter tataouinensis TTB310(T) (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical \"cyst-like\" cells (\"cyst-cyst\" division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed.
Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis
The level of antibiotic resistance exhibited by bacteria can vary as a function of environmental conditions. Here, we report that phenazine-methosulfate (PMS), a redox-cycling compound (RCC) enhances resistance to fluoroquinolone (FQ) norfloxacin. Genetic analysis showed that E . coli adapts to PMS stress by making Fe-S clusters with the SUF machinery instead of the ISC one. Based upon phenotypic analysis of soxR , acrA , and micF mutants, we showed that PMS antagonizes fluoroquinolone toxicity by SoxR-mediated up-regulation of the AcrAB drug efflux pump. Subsequently, we showed that despite the fact that SoxR could receive its cluster from either ISC or SUF, only SUF is able to sustain efficient SoxR maturation under exposure to prolonged PMS period or high PMS concentrations. This study furthers the idea that Fe-S cluster homeostasis acts as a sensor of environmental conditions, and because its broad influence on cell metabolism, modifies the antibiotic resistance profile of E . coli .
Fe-S Cluster Biosynthesis Controls Uptake of Aminoglycosides in a ROS-Less Death Pathway
All bactericidal antibiotics were recently proposed to kill by inducing reactive oxygen species (ROS) production, causing déstabilisation of iron-sulfur (Fe-S) clusters and generating Fenton chemistry. We find that the ROS response is dispensable upon treatment with bactericidal antibiotics. Furthermore, we demonstrate that Fe-S clusters are required for killing only by aminoglycosides. In contrast to cells, using the major Fe-S cluster biosynthesis machinery, ISC, cells using the alternative machinery, SUF, cannot efficiently mature respiratory complexes I and II, resulting in impendence of the proton motive force (PMF), which is required for bactericidal aminoglycoside uptake. Similarly, during iron limitation, cells become intrinsically resistant to aminoglycosides by switching from ISC to SUF and down-regulating both respiratory complexes. We conclude that Fe-S proteins promote aminoglycoside killing by enabling their uptake.
A Diverged Transcriptional Network for Usage of Two Fe-S Cluster Biogenesis Machineries in the Delta-Proteobacterium Myxococcus xanthus
Fe-S proteins are ubiquitous and control a wide variety of key biological processes; therefore, maintaining Fe-S cluster homeostasis is an essential task for all organisms. Here, we provide the first example of how a bacterium from the Deltaproteobacteria branch coordinates expression of two Fe-S cluster biogenesis machineries. Myxococcus xanthus possesses two Fe-S cluster biogenesis machineries, ISC (iron-sulfur cluster) and SUF (sulfur mobilization). Here, we show that in comparison to the phylogenetically distant Enterobacteria, which also have both machineries, M. xanthus evolved an independent transcriptional scheme to coordinately regulate the expression of these machineries. This transcriptional response is directed by RisR, which we show to belong to a phylogenetically distant and biochemically distinct subgroup of the Rrf2 transcription factor family, in comparison to IscR that regulates the isc and suf operons in Enterobacteria. We report that RisR harbors an Fe-S cluster and that holo-RisR acts as a repressor of both the isc and suf operons, in contrast to Escherichia coli , where holo-IscR represses the isc operon whereas apo-IscR activates the suf operon. In addition, we establish that the nature of the cluster and the DNA binding sites of RisR, in the isc and suf operons, diverge from those of IscR. We further show that in M. xanthus , the two machineries appear to be fully interchangeable in maintaining housekeeping levels of Fe-S cluster biogenesis and in synthesizing the Fe-S cluster for their common regulator, RisR. We also demonstrate that in response to oxidative stress and iron limitation, transcriptional upregulation of the M. xanthus isc and suf operons was mediated solely by RisR and that the contribution of the SUF machinery was greater than the ISC machinery. Altogether, these findings shed light on the diversity of homeostatic mechanisms exploited by bacteria to coordinately use two Fe-S cluster biogenesis machineries. IMPORTANCE Fe-S proteins are ubiquitous and control a wide variety of key biological processes; therefore, maintaining Fe-S cluster homeostasis is an essential task for all organisms. Here, we provide the first example of how a bacterium from the Deltaproteobacteria branch coordinates expression of two Fe-S cluster biogenesis machineries. The results revealed a new model of coordination, highlighting the unique and common features that have independently emerged in phylogenetically distant bacteria to maintain Fe-S cluster homeostasis in response to environmental changes. Regulation is orchestrated by a previously uncharacterized transcriptional regulator, RisR, belonging to the Rrf2 superfamily, whose members are known to sense diverse environmental stresses frequently encountered by bacteria. Understanding how M. xanthus maintains Fe-S cluster homeostasis via RisR regulation revealed a strategy reflective of the aerobic lifestyle of this organsim. This new knowledge also paves the way to improve production of Fe-S-dependent secondary metabolites using M. xanthus as a chassis.
Bioenergetic State of Escherichia coli Controls Aminoglycoside Susceptibility
Aminoglycosides (AG) have been used against Gram-negative bacteria for decades. Yet, how bacterial metabolism and environmental conditions modify AG toxicity is poorly understood. Here, we show that the level of AG susceptibility varies depending on the nature of the respiratory chain that Escherichia coli uses for growth, i.e., oxygen, nitrate, or fumarate. We show that all components of the fumarate respiratory chain, namely, hydrogenases 2 and 3, the formate hydrogenlyase complex, menaquinone, and fumarate reductase are required for AG-mediated killing under fumarate respiratory conditions. In addition, we show that the AAA+ ATPase RavA and its Von Wildebrand domain-containing partner, ViaA, are essential for AG to act under fumarate respiratory conditions. This effect was true for all AG that were tested but not for antibiotics from other classes. In addition, we show that the sensitizing effect of RavA-ViaA is due to increased gentamicin uptake in a proton motive force-dependent manner. Interestingly, the sensitizing effect of RavA-ViaA was prominent in poor energy conservation conditions, i.e., with fumarate, but dispensable under high energy conservation conditions, i.e., in the presence of nitrate or oxygen. We propose that RavA-ViaA can facilitate uptake of AG across the membrane in low-energy cellular states. Antibiotic resistance is a major public health, social, and economic problem. Aminoglycosides (AG) are known to be highly effective against Gram-negative bacteria, but their use is limited to life-threatening infections because of their nephrotoxicity and ototoxicity at therapeutic dose. Elucidation of AG-sensitization mechanisms in bacteria would allow reduced effective doses of AG. Here, we have identified the molecular components involved in anaerobic fumarate respiration that are required for AG to kill. In addition to oxidoreductases and menaquinone, this includes new molecular players, RavA, an AAA+ ATPase, and ViaA, its partner that has the VWA motif. Remarkably, the influence of RavA-ViaA on AG susceptibility varies according to the type of bioenergetic metabolism used by E. coli. This is a significant advance because anaerobiosis is well known to reduce the antibacterial activity of AG. This study highlights the critical importance of the relationship between culture conditions, metabolism, and antibiotic susceptibility.