Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Pyun, Jae-Chul"
Sort by:
Parylene-Coated Polytetrafluoroethylene-Membrane-Based Portable Urea Sensor for Real-Time Monitoring of Urea in Peritoneal Dialysate
A portable urea sensor for use in fast flow conditions was fabricated using porous polytetrafluoroethylene (PTFE) membranes coated with amine-functionalized parylene, parylene-A, by vapor deposition. The urea-hydrolyzing enzyme urease was immobilized on the parylene-A-coated PTFE membranes using glutaraldehyde. The urease-immobilized membranes were assembled in a polydimethylsiloxane (PDMS) fluidic chamber, and a screen-printed carbon three-electrode system was used for electrochemical measurements. The success of urease immobilization was confirmed using scanning electron microscopy, and fourier-transform infrared spectroscopy. The optimum concentration of urease for immobilization on the parylene-A-coated PTFE membranes was determined to be 48 mg/mL, and the optimum number of membranes in the PDMS chamber was found to be eight. Using these optimized conditions, we fabricated the urea biosensor and monitored urea samples under various flow rates ranging from 0.5 to 10 mL/min in the flow condition using chronoamperometry. To test the applicability of the sensor for physiological samples, we used it for monitoring urea concentration in the waste peritoneal dialysate of a patient with chronic renal failure, at a flow rate of 0.5 mL/min. This developed urea biosensor is considered applicable for (portable) applications, such as artificial kidney systems and portable dialysis systems.
Exosomal miR-6126 as a novel therapeutic target for overcoming resistance of anti-cancer effect in hepatocellular carcinoma
Background Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer globally, presenting a substantial health challenge, particularly due to late-stage diagnoses that limit treatment effectiveness. Sorafenib, a multi-kinase inhibitor, is the primary chemotherapeutic agent for advanced HCC, but it only extends survival by 2–3 months. However, drug resistance remains a major clinical challenge, necessitating the exploration of new molecular mechanisms, including the role of microRNAs (miRNAs) in sorafenib resistance. In this study, we aimed to identify miRNAs within exosomes derived from sorafenib-resistant HCC cells to elucidate the molecular mechanisms underlying resistance. Methods Sorafenib-resistant cells were generated by culturing the human HCC cell line Huh7 in a medium containing 20 µM sorafenib for six months. Exosomes were isolated from the conditioned medium 24 h before cell harvest using exosome-depleted serum medium. miRNA sequencing and western blotting were used to analyze the expression profiles of exosomal miRNAs and proteins, respectively. pH measurement was performed to assess pH changes in response to sorafenib treatment and miRNA modulation. Results A total of 180 exosomal miRNAs were found to be dysregulated between sorafenib-treated control Huh7 (Huh7S) and sorafenib-resistant Huh7 (Huh7RS) cells, as well as between untreated control Huh7 and Huh7RS cells. Among these, miR-6126 was significantly downregulated in Huh7RS cells compared to Huh7S cells. Functional studies using 2-dimensional (D) and 3D cell culture systems revealed that miR-6126 overexpression reduced sorafenib resistance in Huh7RS cells, while its inhibition increased resistance in Huh7 cells. miR-6126 downregulated key proteins involved in cancer stem cell maintenance, such as CD44 and HK2. Furthermore, the pH level was elevated in cells overexpressing miR-6126 following sorafenib treatment, whereas inhibiting miR-6126 resulted in a lower pH. Conclusions Exosomal miR-6126 plays a pivotal role in sorafenib resistance and tumorigenesis, highlighting its potential as a novel therapeutic target for overcoming drug resistance in HCC.
Impact of glucose metabolism on PD-L1 expression in sorafenib-resistant hepatocellular carcinoma cells
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality worldwide. Programmed cell death ligand-1 (PD-L1) is an immune checkpoint protein that binds to programmed cell death-1 (PD-1), which is expressed in activated T cells and other immune cells and has been employed in cancer therapy, including HCC. Recently, PD-L1 overexpression has been documented in treatment-resistant cancer cells. Sorafenib is a multikinase inhibitor and the only FDA-approved treatment for advanced HCC. However, several patients exhibit resistance to sorafenib during treatment. This study aimed to assess the effect of glucose deprivation on PD-L1 expression in HCC cells. We used PD-L1-overexpressing HepG2 cells and IFN-γ-treated SK-Hep1 cells to explore the impact of glycolysis on PD-L1 expression. To validate the correlation between PD-L1 expression and glycolysis, we analyzed data from The Cancer Genome Atlas (TCGA) and used immunostaining for HCC tissue analysis. Furthermore, to modulate PD-L1 expression, we treated HepG2, SK-Hep1, and sorafenib-resistant SK-Hep1R cells with rapamycin. Here, we found that glucose deprivation reduced PD-L1 expression in HCC cells. Additionally, TCGA data and immunostaining analyses confirmed a positive correlation between the expression of hexokinase II (HK2), which plays a key role in glucose metabolism, and PD-L1. Notably, rapamycin treatment  decreased the expression of PD-L1 and HK2 in both high PD-L1-expressing HCC cells and sorafenib-resistant cells. Our results suggest that the modulation of PD-L1 expression by glucose deprivation may represent a strategy to overcome PD-L1 upregulation in patients with sorafenib-resistant HCC.
Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode
An electrochemical capacitance immunosensor based on an interdigitated wave-shaped micro electrode array (IDWµE) for direct and label-free detection of C-reactive protein (CRP) was reported. A self-assembled monolayer (SAM) of dithiobis (succinimidyl propionate) (DTSP) was used to modify the electrode array for antibody immobilization. The SAM functionalized electrode array was characterized morphologically by atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX). The nature of gold-sulfur interactions on SAM-treated electrode array was probed by X-ray photoelectron spectroscopy (XPS). The covalent linking of anti-CRP-antibodies onto the SAM modified electrode array was characterized morphologically through AFM, and electrochemically through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The application of phosphate-buffered saline (PBS) and human serum (HS) samples containing different concentrations of CRP in the electrode array caused changes in the electrode interfacial capacitance upon CRP binding. CRP concentrations in PBS and HS were determined quantitatively by measuring the change in capacitance (ΔC) through EIS. The electrode immobilized with anti-CRP-antibodies showed an increase in ΔC with the addition of CRP concentrations over a range of 0.01–10,000 ng mL−1. The electrode showed detection limits of 0.025 ng mL−1 and 0.23 ng mL−1 (S/N = 3) in PBS and HS, respectively. The biosensor showed a good reproducibility (relative standard deviation (RSD), 1.70%), repeatability (RSD, 1.95%), and adequate selectivity in presence of interferents towards CRP detection. The sensor also exhibited a significant storage stability of 2 weeks at 4 °C in 1× PBS.
Surface Plasmon Resonance (SPR) Biosensor for the Detection of SARS-CoV-2 Using Autodisplyaed FV-antibodies on Outer Membrane of E. coli
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (NP) participates in viral genome packaging and abundantly produced when infected. In this work, SPR biosensor for the detection of SARS-CoV-2 in viral fluid using Fv-antibodies with the binding affinity to nucleocapsid protein (NP) of SARS-CoV-2. The F V -antibodies with a specific binding activity to the SARS-CoV-2 NP were screened using the F V -antibody library, which was expressed on the outer membrane of E. coli . F V -antibodies comprised three complementarity-determining regions (CDRs) and four frame regions (FRs) of the heavy chain at the binding pocket of IgG. The F V -antibody library was prepared by performing site-directed mutagenesis and by using the autodisplay technology; F V -antibodies with specific binding activities to the nucleocapsid protein (NP) of SARS-CoV-2 were screened using NP-immobilized magnetic beads. First, E. coli isolates with the target F V -antibody were screened, and the binding affinity (K D ) was estimated for the screened E. coli clones using FACS analysis. Then, the outer membrane (OM) of the screened E. coli clones with autodisplayed Fv-antibodies was obtained and layered on an SPR biosensor, and the binding curves of four different coronavirus (CoV) culture fluids, SARS-CoV-2, SARS-CoV, MERS-CoV, and CoV strain 229E, were compared. Finally, the F V -antibodies of the screened E. coli clones were synthesized as peptides (11 amino acid residues), and the binding constants (K D ) to NP as well as the binding curves of the CoV strains in culture fluids were estimated. Using docking simulation, binding sites and interaction types between NP and each synthetic peptide were investigated. Graphical Abstract
Diagnosis and mortality prediction of sepsis via lysophosphatidylcholine 16:0 measured by MALDI-TOF MS
Sepsis remains a critical problem with high mortality worldwide, but there is still a lack of reliable biomarkers. We aimed to evaluate the serum lysophosphatidylcholine (LPC) 16:0 as a biomarker of sepsis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Patients admitted to intensive care unit at Severance Hospital from March 2017 through June 2018 were prospectively enrolled. The inclusion criteria were the fulfillment of at least two criteria of systemic inflammatory response syndrome (SIRS) or the presence of sepsis. Of the 127 patients, 14 had non-infectious SIRS, 41 had sepsis, and 72 had septic shock. The mean serum LPC 16:0 concentration (µmol/L) in non-infectious SIRS was significantly higher than in patients with sepsis and septic shock (101.1 vs. 48.92, p  < 0.05; 101.1 vs. 25.88, p  < 0.001, respectively). The area under the curve (AUC) predicting 28-day mortality using ΔLPC16:0 (D1-D0) levels was 0.7, which was comparable with the APACHE II score (AUC 0.692) and SOFA score (AUC 0.67). Mechanical ventilation, CRRT, lactate, Δ LPC16:0 (D1-D0) less than the cut-off value were significantly associated with 28-day mortality in multivariable analysis. Our results suggest that LPC16:0 could be a useful biomarker for sepsis diagnosis and mortality prediction in ICU patients.
Prolonged and highly efficient intracellular extraction of photosynthetic electrons from single algal cells by optimized nanoelectrode insertion
Harvesting photosynthetic electrons (PEs) from plant or algal cells can be a highly efficient and environmentally friendly way of generating renewable energy. Recent work on nanoelectrode insertion into algal cells has demonstrated the possibility to directly extract PEs from living algal cells with high efficiencies. However, the instability of the inserted cells limits the practicality of this technology. Here, the impact of nanoelectrode insertion on intracellular extraction of PEs is characterized with the goal of stabilizing algal cells after nanoelectrode insertion. Using nanoelectrodes 〈 500 nm in diameter, algal cells remained stable for over one week after insertion and continued to provide PEs through direct extraction by the inserted nanoelectrodes. After nanoelectrode insertion, a photosynthetic current density of 6 mA.cm-2, which is several fold higher than the current densities attained using approaches based on isolated thylakoid membranes or photosystem I complexes, was observed in the dark and during illumination at various light intensities.
A Regenerative Immunoaffinity Layer Based on the Outer Membrane of Z-Domains Autodisplaying E. coli for Immunoassays and Immunosensors
Through orientation control of antibodies, Z-domains autodisplaying Escherichia coli outer cell membrane (OM) may be utilized to improve the sensitivity and limit of detection (LOD) of immunoassays and immunosensors. A regenerative immunoaffinity layer based on Z-domains autodisplaying E. coli OM was developed for the surface plasmon resonance (SPR) biosensor. Regeneration conditions for the Z-domains autodisplaying E. coli OM-based immunoassays and immunosensors were optimized by varying pH and detergent concentration. An E. coli cell-based HRP immunoassay was tested and validated in three sequential regenerative immunoassays under optimal conditions. The OM of Z-domains autodisplaying E. coli was isolated and coated on the two-dimensional substrate (microplate). The OM-based HRP immunoassay was tested and validated in four regenerative immunoassays. This regenerative OM layer was applied to the SPR biosensor. Z-domains autodisplaying OM layered onto the gold surface of SPR biosensors was developed, and the OM-based regenerative immunoaffinity layer with orientation control was tested using CRP analyte. The SPR biosensor regenerative immunoaffinity layer demonstrated that CRP biosensing was repeated for five regeneration cycles with less than 2% signal difference. Therefore, the newly developed regenerative immunoaffinity layer with antibody orientation control may improve biosensing sensitivity and reduce the cost of medical diagnosis.
Modulation of SIRT3 expression through CDK4/6 enhances the anti-cancer effect of sorafenib in hepatocellular carcinoma cells
Background Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide. The only drug currently approved for clinical use in the treatment of advanced HCC is sorafenib. However, many patients with HCC show reduced sensitivity to sorafenib during treatment. SIRT3, a member of the mammalian sirtuin family, is a tumor suppressor in certain tumor types. However, only few studies have investigated the effects of SIRT3 on tumor prognosis and sorafenib sensitivity in patients with HCC. Here, we aimed to investigate the correlation between SIRT3 expression and glucose metabolism and proliferation in HCC and discover effective compounds that increase endogenous SIRT3 modulation effect of sorafenib. Methods To determine the correlation between SIRT3 and glucose related proteins, immunostaining was performed with liver cancer tissue using various antibodies. To investigate whether the expression of SIRT3 in HCC is related to the resistance to sorafenib, we treated sorafenib after the modulation of SIRT3 levels in HCC cell lines (overexpression in Huh7, knockdown in HepG2). We also employed PD0332991 to modulate the SIRT3 expression in HCC cell and conducted functional assays. Results SIRT3 expression was downregulated in high glycolytic and proliferative HCC cells of human patients, xenograft model and HCC cell lines. Moreover, SIRT3 expression was downregulated after sorafenib treatment, resulting in reduced drug sensitivity in HCC cell lines. To enhance the anti-tumor effect of sorafenib, we employed PD0332991 (CDK4/6-Rb inhibitor) based on the correlation between SIRT3 and phosphorylated retinoblastoma protein in HCC. Notably, combined treatment with sorafenib and PD0332991 showed an enhancement of the anti-tumor effect in HCC cells. Conclusions Our data suggest that the modulation of SIRT3 by CDK4/6 inhibition might be useful for HCC therapy together with sorafenib, which, unfortunately, has limited efficacy and whose use is often associated with drug resistance.
Identification of new binding proteins of focal adhesion kinase using immunoprecipitation and mass spectrometry
Focal adhesion kinase (FAK) is a 125 kDa protein recruited as a participant in focal adhesion dynamics and serves as a signaling scaffold for the assembly and subsequent maturation of focal contact. Identification of new FAK binding proteins could reveal potential signaling targets and contribute to further development of therapeutic drugs in the treatment of colon cancer. Here, we applied a functional proteomic strategy to identify proteins that interact with FAK in human colon cancer cell line HCT-116. Proteins were targeted by coimmunoprecipitation with an anti-FAK antibody and resolved on 1D-SDS-PAGE. The gel was excised, reduced, alkylated, and trypsin digested. Tryptic peptides were separated by nano-LC-MS/MS by an LTQ-Orbitrap-Velos spectrometer. We identified 101 proteins in the immunocomplex under epithelial growth factor (EGF) stimulation. Three proteins, zyxin, nesprin-1, and desmoplakin, were discovered and validated using reciprocal immunoprecipitation and Western blot analysis. Then, we sought to study the biological relevance of these proteins by siRNA transfection of HCT-116 cells. According to the results, zyxin might play a central role as an upstream regulator to mediate critical cancer-related signaling pathways. Zyxin and nesprin-1 depletion significantly impaired cell migration and invasion capabilities. Additionally, we performed ELISA assays on serum samples from patients with colon cancer instead of cell models to quantify the protein levels of zyxin and nesprin-1. Our results suggested that zyxin and nesprin-1 are not only promising therapeutic targets but also potential diagnostic biomarkers for colon cancer.