Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "Pywell, Richard"
Sort by:
Land use driven change in soil pH affects microbial carbon cycling processes
Soil microorganisms act as gatekeepers for soil–atmosphere carbon exchange by balancing the accumulation and release of soil organic matter. However, poor understanding of the mechanisms responsible hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically test the link between microbial ecophysiological traits and topsoil carbon content across geographically distributed soils and land use contrasts. We discovered distinct pH controls on microbial mechanisms of carbon accumulation. Land use intensification in low-pH soils that increased the pH above a threshold (~6.2) leads to carbon loss through increased decomposition, following alleviation of acid retardation of microbial growth. However, loss of carbon with intensification in near-neutral pH soils was linked to decreased microbial biomass and reduced growth efficiency that was, in turn, related to trade-offs with stress alleviation and resource acquisition. Thus, less-intensive management practices in near-neutral pH soils have more potential for carbon storage through increased microbial growth efficiency, whereas in acidic soils, microbial growth is a bigger constraint on decomposition rates. Land use intensification could modify microbial activity and thus ecosystem function. Here, Malik et al. sample microbes and carbon-related functions across a land use gradient, demonstrating that microbial biomass and carbon use efficiency are reduced in human-impacted near-neutral pH soils.
Impacts of neonicotinoid use on long-term population changes in wild bees in England
Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines. Neonicotinoid as insecticide on oilseed rape can reduce bee colony density, but its effect at a large geographical scale is unclear. This study describes 18-year long wild bee tracking data in England and show neonicotinoid use is correlated with wild bee population declines at real landscape scales.
Long-term woodland restoration on lowland farmland through passive rewilding
Natural succession of vegetation on abandoned farmland provides opportunities for passive rewilding to re-establish native woodlands, but in Western Europe the patterns and outcomes of vegetation colonisation are poorly known. We combine time series of field surveys and remote sensing (lidar and photogrammetry) to study woodland development on two farmland fields in England over 24 and 59 years respectively: the New Wilderness (2.1 ha) abandoned in 1996, and the Old Wilderness (3.9 ha) abandoned in 1961, both adjacent to ancient woodland. Woody vegetation colonisation of the New Wilderness was rapid, with 86% vegetation cover averaging 2.9 m tall after 23 years post-abandonment. The Old Wilderness had 100% woody cover averaging 13.1 m tall after 53 years, with an overstorey tree-canopy (≥ 8 m tall) covering 91%. By this stage, the structural characteristics of the Old Wilderness were approaching those of neighbouring ancient woodlands. The woody species composition of both Wildernesses differed from ancient woodland, being dominated by animal-dispersed pedunculate oak Quercus robur and berry-bearing shrubs. Tree colonisation was spatially clustered, with wind-dispersed common ash Fraxinus excelsior mostly occurring near seed sources in adjacent woodland and hedgerows, and clusters of oaks probably resulting from acorn hoarding by birds and rodents. After 24 years the density of live trees in the New Wilderness was 132/ha (57% oak), with 390/ha (52% oak) in the Old Wilderness after 59 years; deadwood accounted for 8% of tree stems in the former and 14% in the latter. Passive rewilding of these ‘Wilderness’ sites shows that closed-canopy woodland readily re-established on abandoned farmland close to existing woodland, it was resilient to the presence of herbivores and variable weather, and approached the height structure of older woods within approximately 50 years. This study provides valuable long-term reference data in temperate Europe, helping to inform predictions of the potential outcomes of widespread abandonment of agricultural land in this region.
Wildlife-friendly farming increases crop yield: evidence for ecological intensification
Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50–60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained—and, indeed, enhanced for some crops—despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields.
Functional diversity positively affects prey suppression by invertebrate predators
The use of pesticides within agricultural ecosystems has led to wide concern regarding negative effects on the environment. One possible alternative is the use of predators of pest species that naturally occur within agricultural ecosystems. However, the mechanistic basis for how species can be manipulated in order to maximize pest control remains unclear. We carried out a meta-analysis of 51 studies that manipulated predator species richness in reference to suppression of herbivore prey to determine which components of predator diversity affect pest control. Overall, functional diversity (FD) based on predator’s habitat domain, diet breadth and hunting strategy was ranked as the most important variable. Our analysis showed that increases in FD in polycultures led to greater prey suppression compared to both the mean of the component predator species, and the most effective predator species, in monocultures. Further analysis of individual traits indicated these effects are likely to be driven by broad niche differentiation and greater resource exploitation in functionally diverse predator communities. A decoupled measure of phylogenetic diversity, whereby the overlap in variation with FD was removed, was not found to be an important driver of prey suppression. Our results suggest that increasing FD in predatory invertebrates will help maximize pest control ecosystem services in agricultural ecosystems, with the potential to increase suppression above that of the most effective predator species.
Synchrony matters more than species richness in plant community stability at a global scale
The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.
Neonicotinoid residues in UK honey despite European Union moratorium
Due to concerns over negative impacts on insect pollinators, the European Union has implemented a moratorium on the use of three neonicotinoid pesticide seed dressings for mass-flowering crops. We assessed the effectiveness of this policy in reducing the exposure risk to honeybees by collecting 130 samples of honey from bee keepers across the UK before (2014: N = 21) and after the moratorium was in effect (2015: N = 109). Neonicotinoids were present in about half of the honey samples taken before the moratorium, and they were present in over a fifth of honey samples following the moratorium. Clothianidin was the most frequently detected neonicotinoid. Neonicotinoid concentrations declined from May to September in the year following the ban. However, the majority of post-moratorium neonicotinoid residues were from honey harvested early in the year, coinciding with oilseed rape flowering. Neonicotinoid concentrations were correlated with the area of oilseed rape surrounding the hive location. These results suggest mass flowering crops may contain neonicotinoid residues where they have been grown on soils contaminated by previously seed treated crops. This may include winter seed treatments applied to cereals that are currently exempt from EU restrictions. Although concentrations of neonicotinoids were low (<2.0 ng g-1), and posed no risk to human health, they may represent a continued risk to honeybees through long-term chronic exposure.
Resilience and food security: rethinking an ecological concept
1. Focusing on food production, in this paper we define resilience in the food security context as maintaining production of sufficient and nutritious food in the face of chronic and acute environmental perturbations. In agri-food systems, resilience is manifest over multiple spatial scales: field, farm, regional and global. Metrics comprise production and nutritional diversity as well as socioeconomic stability of food supply. 2. Approaches to enhancing resilience show a progression from more ecologically based methods at small scales to more socially based interventions at larger scales. At the field scale, approaches include the use of mixtures of crop varieties, livestock breeds and forage species, polycultures and boosting ecosystem functions. Stress-tolerant crops, or with greater plasticity, provide technological solutions. 3. At the farm scale, resilience may be conferred by diversifying crops and livestock and by farmers implementing adaptive approaches in response to perturbations. Biodiverse landscapes may enhance resilience, but the evidence is weak. At regional to global scales, resilient food systems will be achieved by coordination and implementation of resilience approaches among farms, advice to farmers and targeted research. 4. Synthesis. Threats to food production are predicted to increase under climate change and land degradation. Holistic responses are needed that integrate across spatial scales. Ecological knowledge is critical, but should be implemented alongside agronomic solutions and socio-economic transformations.
Slow development of woodland vegetation and bird communities during 33 years of passive rewilding in open farmland
Passive rewilding is a potential tool for expanding woodland cover and restoring biodiversity by abandoning land management and allowing natural vegetation succession to occur. Land can be abandoned to passive rewilding deliberately or due to socio-economic change. Despite abandonment being a major driver of land use change, few have studied the long-term outcomes for vegetation and biodiversity in Western Europe. Studies are also biased towards sites that are close to seed sources and favourable to woodland colonisation. In this case-study, we reconstruct a time series of passive rewilding over 33 years on 25 ha of former farmland that had been subject to soil tipping, far from woodland seed sources. Natural colonisation by shrubs and trees was surveyed at three points during the time series, using field mapping and lidar. Breeding birds were surveyed at three time points, and compared with surveys from nearby farmland. Results showed that natural colonisation of woody vegetation was slow, with open grassland dominating the old fields for two decades, and small wetlands developing spontaneously. After 33 years, thorny shrub thickets covered 53% of the site and former hedgerows became subsumed or degraded, but trees remained scarce. However, the resulting habitat mosaic of shrubland, grassland and wetland supported a locally distinctive bird community. Farmland bird species declined as passive rewilding progressed, but this was countered by relatively more wetland birds and an increase in woodland birds, particularly songbirds, compared to nearby farmland. Alongside biodiversity benefits, shrubland establishment by passive rewilding could potentially provide ecosystem services via abundant blossom resources for pollinators, and recreation and berry-gathering opportunities for people. Although closed-canopy woodland remained a distant prospect even after 33 years, the habitat mosaic arising from passive rewilding could be considered a valuable outcome, which could contribute to nature recovery and provision of ecosystem services.
Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland
It is increasingly recognized that belowground responses to vegetation change are closely linked to plant functional traits. However, our understanding is limited concerning the relative importance of different plant traits for soil functions and of the mechanisms by which traits influence soil properties in the real world. Here we test the hypothesis that taller species, or those with complex rooting structures, are associated with high rates of nutrient and carbon (C) cycling in grassland. We further hypothesized that communities dominated by species with deeper roots may be more resilient to drought. These hypotheses were tested in a 3-yr grassland restoration experiment on degraded ex-arable land in southern England. We sowed three trait-based plant functional groups, assembled using database derived values of plant traits, and their combinations into bare soil. This formed a range of plant trait syndromes onto which we superimposed a simulated drought 2 yr after initial establishment. We found strong evidence that community weighted mean (CWM) of plant height is negatively associated with soil nitrogen cycling and availability and soil multifunctionality. We propose that this was due to an exploitative resource capture strategy that was inappropriate in shallow chalk soils. Further, complexity of root architecture was positively related to soil multifunctionality throughout the season, with fine fibrous roots being associated with greater rates of nutrient cycling. Drought resistance of soil functions including ecosystem respiration, mineralization, and nitrification were positively related to functional divergence of rooting depth, indicating that, in shallow chalk soils, a range of water capture strategies is necessary to maintain functions. Finally, after 3 yr of the experiment, we did not detect any links between the plant traits and microbial communities, supporting the finding that traits based on plant structure and resource foraging capacity are the main variables driving soil function in the early years of grassland conversion. We suggest that screening recently restored grassland communities for potential soil multifunctionality and drought resilience may be possible based on rooting architecture and plant height. These results indicate that informed assembly of plant communities based on plant traits could aid in the restoration of functioning in degraded soil.