Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
53 result(s) for "Quéméneur, Eric"
Sort by:
Design and selection of anti-PD-L1 single-domain antibody and tumor necrosis factor superfamily ligands for an optimal vectorization in an oncolytic virus
Arming oncolytic viruses with transgenes encoding immunomodulators improves their therapeutic efficacy by enhancing and/or sustaining the innate and adaptive anti-tumoral immune responses. We report here the isolation, selection, and vectorization of a blocking anti-human PDL1 single-domain antibody (sdAb) isolated from PDL1-immunized alpacas. Several formats of this sdAb were vectorized into the vaccinia virus (VV) and evaluated for their programmed cell death protein 1 (PD1)/PD1 ligand (PDL1) blocking activity in the culture medium of tumor cells infected in vitro . In those conditions, VV-encoded homodimeric sdAb generated superior PDL1 blocking activity compared to a benchmark virus encoding full-length avelumab. The sdAb was further used to design simple, secreted, and small tumor necrosis factor superfamily (TNFSF) fusions with the ability to engage their cognate receptors (TNFRSF) only in the presence of PDL1-positive cells. Finally, PDL1-independent alternatives of TNFRSF agonists were also constructed by fusing different variants of surfactant protein-D (SP-D) oligomerization domains with TNFSF ectodomains. An optimal SP-D–CD40L fusion with an SP-D collagen domain reduced by 80% was identified by screening with a transfection/infection method where poxvirus transfer plasmids and vaccinia virus were successively introduced into the same cell. However, once vectorized in VV, this construct had a much lower CD40 agonist activity compared to the SP-D–CD40L construct, which is completely devoid of the collagen domain that was finally selected. This latest result highlights the importance of working with recombinant viruses early in the payload selection process. Altogether, these results bring several complementary solutions to arm oncolytic vectors with powerful immunomodulators to improve their immune-based anti-tumoral activity.
Safety, biodistribution and viral shedding of oncolytic vaccinia virus TG6002 administered intravenously in healthy beagle dogs
Abstract Oncolytic virotherapy is an emerging strategy that uses replication-competent viruses to kill tumor cells. We have reported the oncolytic effects of TG6002, a recombinant oncolytic vaccinia virus, in preclinical human xenograft models and canine tumor explants. To assess the safety, biodistribution and shedding of TG6002 administered by the intravenous route, we conducted a study in immune-competent healthy dogs. Three dogs each received a single intravenous injection of TG6002 at 10 5 PFU/kg, 10 6 PFU/kg or 10 7 PFU/kg, and one dog received three intravenous injections at 10 7 PFU/kg. The injections were well tolerated without any clinical, hematological or biochemical adverse events. Viral genomes were only detected in blood at the earliest sampling time point of one-hour post-injection at 10 7 PFU/kg. Post mortem analyses at day 35 allowed detection of viral DNA in the spleen of the dog which received three injections at 10 7 PFU/kg. Viral genomes were not detected in the urine, saliva or feces of any dogs. Seven days after the injections, a dose-dependent antibody mediated immune response was identified. In conclusion, intravenous administration of TG6002 shows a good safety profile, supporting the initiation of clinical trials in canine cancer patients as well as further development as a human cancer therapy.
Patient-derived tumoroids and proteomic signatures: tools for early drug discovery
Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy in vitro responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids. PDTs are accurate tools to predict patient’s clinical responses at the in vitro stage. We showed that onco-virotherapy could exert specific antitumoral effects by producing a higher number of viral particles in PDTs than in healthy organoids. In the present work, we used multiplex protein screening, based on proximity extension assay to highlight different response profiles. Our results pointed to the increase of proteins implied in T cell activation, such as IFN-γ following onco-virotherapy treatment. Based on our observation, oncolytic viruses-based therapy responders are dependent on several factors: a high PD-L1 expression, which is a biomarker of greater immune response under immunotherapies, and the number of viral particles present in tumor tissue, which is dependent to the metabolic state of tumoral cells. Herein, we highlight the use of PDTs as an alternative in vitro model to assess patient-specific responses to onco-virotherapy at the early stage of the preclinical phases.
TG6050, an oncolytic vaccinia virus encoding interleukin-12 and anti-CTLA-4 antibody, favors tumor regression via profound immune remodeling of the tumor microenvironment
BackgroundTG6050 was designed as an improved oncolytic vector, combining the intrinsic properties of vaccinia virus to selectively replicate in tumors with the tumor-restricted expression of recombinant immune effectors to modify the tumor immune phenotype. These properties might be of particular interest for “cold” tumors, either poorly infiltrated or infiltrated with anergic T cells.Methods TG6050, an oncolytic vaccinia virus encodes single-chain human interleukin-12 (hIL-12) and full-length anti-cytotoxic T-lymphocyte-associated antigen-4 (@CTLA-4) monoclonal antibody. The relevant properties of TG6050 (replication, cytopathy, transgenes expression and functionality) were extensively characterized in vitro. The biodistribution and pharmacokinetics of the viral vector, @CTLA-4 and IL-12, as well as antitumoral activities (alone or combined with immune checkpoint inhibitors) were investigated in several “hot” (highly infiltrated) and “cold” (poorly infiltrated) syngeneic murine tumor models. The mechanism of action was deciphered by monitoring both systemic and intratumoral immune responses, and by tumor transcriptome analysis. The safety of TG6050 after repeated intravenous administrations was evaluated in cynomolgus monkeys, with a focus on the level of circulating IL-12.ResultsMultiplication and propagation of TG6050 in tumor cells in vitro and in vivo were associated with local expression of functional IL-12 and @CTLA-4. This dual mechanism translated into a strong antitumoral activity in both “cold” and “hot” tumor models (B16F10, LLC1 or EMT6, CT26, respectively) that was further amplified when combined with anti-programmed cell death protein-1. Analysis of changes in the tumor microenvironment (TME) after treatment with TG6050 showed increases in interferon-gamma, of CD8+T cells, and of M1/M2 macrophages ratio, as well as a drastic decrease of regulatory T cells. These local modifications were observed alongside bolstering a systemic and specific antitumor adaptive immune response. In toxicology studies, TG6050 did not display any observable adverse effects in cynomolgus monkeys.ConclusionsTG6050 effectively delivers functional IL-12 and @CTLA-4 into the tumor, resulting in strong antitumor activity. The shift towards an inflamed TME correlated with a boost in systemic antitumor T cells. The solid preclinical data and favorable benefit/risk ratio paved the way for the clinical evaluation of TG6050 in metastatic non-small cell lung cancer (NCT05788926 trial in progress).
Patient-Derived Lung Tumoroids—An Emerging Technology in Drug Development and Precision Medicine
Synthetic 3D multicellular systems derived from patient tumors, or tumoroids, have been developed to complete the cancer research arsenal and overcome the limits of current preclinical models. They aim to represent the molecular and structural heterogeneity of the tumor micro-environment, and its complex network of interactions, with greater accuracy. They are more predictive of clinical outcomes, of adverse events, and of resistance mechanisms. Thus, they increase the success rate of drug development, and help clinicians in their decision-making process. Lung cancer remains amongst the deadliest of diseases, and still requires intensive research. In this review, we analyze the merits and drawbacks of the current preclinical models used in lung cancer research, and the position of tumoroids. The introduction of immune cells and healthy regulatory cells in autologous tumoroid models has enabled their application to most recent therapeutic concepts. The possibility of deriving tumoroids from primary tumors within reasonable time has opened a direct approach to patient-specific features, supporting their future role in precision medicine.
World’s First Long-Term Colorectal Cancer Model by 3D Bioprinting as a Mechanism for Screening Oncolytic Viruses
Long-term modelization of cancer as it changes in the human body is a difficult goal, particularly when designing and testing new therapeutic strategies. This becomes even more difficult with metastasis modeling to show chemotherapeutic molecule delivery directly to tumoral cells. Advanced therapeutics, including oncolytic viruses, antibody-based and cell-based therapies are increasing. The question is, are screening tests also evolving? Next-generation therapeutics need equally advanced screening tests, which whilst difficult to achieve, are the goal of our work here, creating models of micro- and macrotumors using 3D bioprinting. We developed advanced colorectal cancer tumor processing techniques to provide options for cellular expansion, microtumor printing, and long-term models, which allow for the evaluation of the kinetics of penetration testing, therapeutic success, targeted therapies, and personalized medicine. We describe how we tested tumors from a primary colorectal patient and, applying 3D bioprinting, matured long-term models for oncolytic metastatic screening. Three-dimensional microtumors were kept alive for the longest time ever recorded in vitro, allowing longitudinal studies, screening of oncolytic viruses and realistic modelization of colorectal cancer. These 3D bioprinted models were maintained for around 6 months and were able to demonstrate the effective delivery of a product to the tumoral environment and represent a step forward in therapeutic screening.
Vectorized Treg-depleting αCTLA-4 elicits antigen cross-presentation and CD8+ T cell immunity to reject ‘cold’ tumors
BackgroundImmune checkpoint blockade (ICB) is a clinically proven concept to treat cancer. Still, a majority of patients with cancer including those with poorly immune infiltrated ‘cold’ tumors are resistant to currently available ICB therapies. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is one of few clinically validated targets for ICB, but toxicities linked to efficacy in approved αCTLA-4 regimens have restricted their use and precluded full therapeutic dosing. At a mechanistic level, accumulating preclinical and clinical data indicate dual mechanisms for αCTLA-4; ICB and regulatory T cell (Treg) depletion are both thought to contribute efficacy and toxicity in available, systemic, αCTLA-4 regimens. Accordingly, strategies to deliver highly effective, yet safe αCTLA-4 therapies have been lacking. Here we assess and identify spatially restricted exposure to a novel strongly Treg-depleting, checkpoint-blocking, vectorized αCTLA-4, as a highly efficacious and potentially safe strategy to target CTLA-4.MethodsA novel human IgG1 CTLA-4 antibody (4-E03) was identified using function-first screening for monoclonal antibodies (mAbs) and targets associated with superior Treg-depleting activity. A tumor-selective oncolytic vaccinia vector was then engineered to encode this novel, strongly Treg-depleting, checkpoint-blocking, αCTLA-4 antibody or a matching surrogate antibody, and Granulocyte-macrophage colony-stimulating factor (GM-CSF) (VVGM-αCTLA-4).ResultsThe identified 4-E03 antibody showed significantly stronger Treg depletion, but equipotent checkpoint blockade, compared with clinically validated αCTLA-4 ipilimumab against CTLA-4-expressing Treg cells in a humanized mouse model in vivo. Intratumoral administration of VVGM-αCTLA-4 achieved tumor-restricted CTLA-4 receptor saturation and Treg depletion, which elicited antigen cross-presentation and stronger systemic expansion of tumor-specific CD8+ T cells and antitumor immunity compared with systemic αCTLA-4 antibody therapy. Efficacy correlated with FcγR-mediated intratumoral Treg depletion. Remarkably, in a clinically relevant mouse model resistant to systemic ICB, intratumoral VVGM-αCTLA-4 synergized with αPD-1 to reject cold tumors.ConclusionOur findings demonstrate in vivo proof of concept for spatial restriction of Treg depletion-optimized immune checkpoint blocking, vectorized αCTLA-4 as a highly effective and safe strategy to target CTLA-4. A clinical trial evaluating intratumoral VVGM-αhCTLA-4 (BT-001) alone and in combination with αPD-1 in metastatic or advanced solid tumors has commenced.
The Enhanced Tumor Specificity of TG6002, an Armed Oncolytic Vaccinia Virus Deleted in Two Genes Involved in Nucleotide Metabolism
Oncolytic vaccinia viruses are currently in clinical development. However, the safety and the tumor selectivity of these oncolytic viruses must be improved. We previously constructed a first-generation oncolytic vaccinia virus by expressing the suicide gene FCU1 inserted in the J2R locus that encodes thymidine kinase. We demonstrated that the combination of this thymidine-kinase-deleted vaccinia virus and the FCU1/5-fluocytosine system is a potent vector for cancer therapy. Here, we developed a second generation of vaccinia virus, named TG6002, expressing FCU1 and with targeted deletions of the J2R gene and the I4L gene, which encodes the large subunit of the ribonucleotide reductase. Compared to the previously used single thymidine-kinase-deleted vaccinia virus, TG6002 is highly attenuated in normal cells, yet it displays tumor-selective replication and tumor cell killing. TG6002 replication is highly dependent on cellular ribonucleotide reductase levels and is less pathogenic than the single-deleted vaccinia virus. Tumor-selective viral replication, prolonged therapeutic levels of 5-fluorouracil in tumors, and significant antitumor effects were observed in multiple human xenograft tumor models after systemic injection of TG6002 and 5-fluorocytosine. TG6002 displays a convincing safety profile and is a promising candidate for treatment of cancer in humans.
Pharmacokinetics and tolerance of repeated oral administration of 5-fluorocytosine in healthy dogs
Background 5-fluorocytosine is a pyrimidine and a fluorinated cytosine analog mainly used as an antifungal agent. It is a precursor of 5-fluorouracil, which possesses anticancer properties. To reduce systemic toxicity of 5-fluorouracil during chemotherapy, 5- fluorocytosine can be used as a targeted anticancer agent. Expression of cytosine deaminase by a viral vector within a tumor allows targeted chemotherapy by converting 5-fluorocytosine into the cytotoxic chemotherapeutic agent 5-fluorouracil. However, little is known about the tolerance of 5-fluorocytosine in dogs after prolonged administration. Results In three healthy Beagle dogs receiving 100 mg/kg of 5-fluorocytosine twice daily for 14 days by oral route, non-compartmental pharmacokinetics revealed a terminal elimination half-life of 164.5 ± 22.5 min at day 1 and of 179.2 ± 11.5 min, after 7 days of administration. Clearance was significantly decreased between day 1 and day 7 with 0.386 ± 0.031 and 0.322 ± 0.027 ml/min/kg, respectively. Maximal plasma concentration values were below 100 µg/ml, which is considered within the therapeutic margin for human patients. 5-fluorouracil plasma concentration was below the limit of detection at all time points. The main adverse events consisted of depigmented, ulcerated, exudative, and crusty cutaneous lesions 10 to 13 days after beginning 5-fluorocytosine administration. The lesions were localized to the nasal planum, the lips, the eyelids, and the scrotum. Histological analyses were consistent with a cutaneous lupoid drug reaction. Complete healing was observed 15 to 21 days after cessation of 5-fluorocytosine. No biochemical or hematological adverse events were noticed. Conclusions Long term administration of 5-fluorocytosine was associated with cutaneous toxicity in healthy dogs. It suggests that pharmacotherapy should be adjusted to reduce the toxicity of 5-fluorocytosine in targeted chemotherapy.
Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC
BackgroundAdvanced non-small cell lung cancer patients receiving TG4010, a therapeutic viral vaccine encoding human Mucin 1 and interleukin-2 in addition to standard chemotherapy, displayed longer overall survival in comparison to that of patients treated with standard chemotherapy alone. Our study intended to establish the association between overall survival and vaccine-induced T cell responses against tumor associated antigens (TAA) targeted by the vaccine.MethodThe TIME trial was a placebo-controlled, randomized phase II study aimed at assessing efficacy of TG4010 with chemotherapy in NSCLC. 78 patients from the TIME study carrying the HLA-A02*01 haplotype were analyzed using combinatorial encoding of MHC multimers to detect low frequencies of cellular immune responses to TG4010 and other unrelated TAA.ResultsWe report that improvement of survival under TG4010 treatment correlated with development of T cell responses against MUC1. Interestingly, responses against MUC1 were associated with broadening of CD8 responses against non-targeted TAA, thus demonstrating induction of epitope spreading.ConclusionOur results support the causality of specific T-cell response in improved survival in NSCLC. Additionally, vaccine induced epitope spreading to other TAA participates to the enrichment of the diversity of the anti-tumor response. Hence, TG4010 appears as a useful therapeutic option to maximize response rate and clinical benefit in association with other targeted immuno-modulators.Trial registrationRegistered on ClinicalTrials.gov under identifier NCT01383148 on June 23rd, 2011.