Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
38
result(s) for
"Quinlan, Franklyn"
Sort by:
Ultrafast electro-optic light with subcycle control
by
Metcalf, Andrew J.
,
Carlson, David R.
,
Zhang, Wei
in
Broadband
,
Continuous wave lasers
,
Femtosecond pulses
2018
The ability to generate coherent optical frequency combs has had a huge impact on precision metrology, imaging, and sensing applications. On closer inspection, the broadband “white light” generated through the interaction of femtosecond mode-locked laser pulses is composed of billions or trillions of precisely spaced wavelengths of light. Carlson
et al.
demonstrate an alternative to the mode-locked laser approach—the electro-optic modulation of a continuous-wave laser light source can also generate optical frequency combs (see the Perspective by Torres-Company). The electro-optic modulation techniques can operate at much higher repetition rates than mode-locked lasers, which means they could potentially yield even more precise measurements.
Science
, this issue p.
1358
; see also p.
1316
Electro-optic modulation of a continuous-wave laser is used to produce ultrafast and ultrastable optical frequency combs.
Light sources that are ultrafast and ultrastable enable applications like timing with subfemtosecond precision and control of quantum and classical systems. Mode-locked lasers have often given access to this regime, by using their high pulse energies. We demonstrate an adaptable method for ultrastable control of low-energy femtosecond pulses based on common electro-optic modulation of a continuous-wave laser light source. We show that we can obtain 100-picojoule pulse trains at rates up to 30 gigahertz and demonstrate sub–optical cycle timing precision and useful output spectra spanning the near infrared. Our source enters the few-cycle ultrafast regime without mode locking, and its high speed provides access to nonlinear measurements and rapid transients.
Journal Article
Photonic chip-based low-noise microwave oscillator
by
Matsko, Andrey
,
McLemore, Charles A.
,
Wu, Lue
in
639/166
,
639/624
,
Humanities and Social Sciences
2024
Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb
1
–
3
. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division
4
,
5
. Narrow-linewidth self-injection-locked integrated lasers
6
,
7
are stabilized to a miniature Fabry–Pérot cavity
8
, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb
9
. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of −96 dBc Hz
−1
at 100 Hz offset frequency that decreases to −135 dBc Hz
−1
at 10 kHz offset—values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.
We leverage advances in integrated photonics to generate low-noise microwaves with an optical frequency division architecture that can be low power and chip integrated.
Journal Article
Photonic chip-based low-noise microwave oscillator
2024
Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.
Journal Article
An optoelectronic microwave synthesizer with frequency tunability and low phase noise
by
Hanifi, Samin
,
Bowers, Steven M.
,
McLemore, Charles A.
in
639/166/987
,
639/624
,
639/624/1075/1081
2024
Communication, navigation and radar systems rely on frequency-tunable and low-noise microwave sources. Compared to electronic microwave synthesizers, photonic systems that leverage high spectral purity lasers and optical frequency combs can generate microwaves with exceptionally low phase noise. However, photonic approaches lack frequency tunability and have substantial size, weight and power requirements, which limit wider application. Here we address these shortcomings with a hybrid optoelectronic approach that combines simplified optical frequency division with direct digital synthesis to produce tunable low-phase-noise microwaves across the entire X-band (8–12 GHz). This resulted in phase noise at 10 GHz of −156 dBc Hz
−1
at 10 kHz offset and fractional frequency instability of 1 × 10
−13
at 0.1 s. Spot-tuning away from 10 GHz by ±500 MHz, ±1 GHz or ±2 GHz yielded phase noise at 10 kHz offset of −150, −146 and −140 dBc Hz
−1
, respectively. Our synthesizer architecture is compatible with integrated photonic implementations and, thus, could be integrated in a chip-scale package.
A synthesizer that combines a fixed low-noise photonic oscillator and a direct digital synthesizer—and is based on components that can all be integrated on chip—can create microwave signals that are tunable with low noise.
Journal Article
The photodetection of ultrashort optical pulse trains for low noise microwave signal generation
2023
Electrical signals derived from optical sources have achieved record-low levels of phase noise, and have demonstrated the highest frequency stability yet achieved in the microwave domain. Attaining such ultrastable phase and frequency performance requires high-fidelity optical-to-electrical conversion, typically performed via a high-speed photodiode. This paper reviews characteristics of the direct photodetection of optical pulses for the intent of generating high power, low phase noise microwave signals from optical sources. The two most popular types of photodiode detectors used for low noise microwave generation are discussed in terms of electrical pulse characteristics, achievable microwave power, and photodetector nonlinearities. Noise sources inherent to photodetection, such as shot noise, flicker noise, and photocarrier scattering are reviewed, and their impact on microwave phase fidelity is discussed. General guidelines for attaining the lowest noise possible from photodetection that balances power saturation, optical amplification, and amplitude-to-phase conversion, are also presented.
Thermal-light heterodyne spectroscopy with frequency comb calibration
by
Connor, Fredrick
,
Olsen, Freja
,
Terrien, Ryan
in
Astronomical spectroscopy
,
Astronomy
,
Atomic clocks
2022
Precision laser spectroscopy is key to many developments in atomic and molecular physics and the advancement of related technologies such as atomic clocks and sensors. However, in important spectroscopic scenarios, such as astronomy and remote sensing, the light is of thermal origin and interferometric or diffractive spectrometers typically replace laser spectroscopy. In this work, we employ laser-based heterodyne radiometry to measure incoherent light sources in the near-infrared and introduce techniques for absolute frequency calibration with a laser frequency comb. Measuring the solar continuum, we obtain a signal-to-noise ratio that matches the fundamental quantum-limited prediction given by the thermal photon distribution and our system's efficiency, bandwidth, and averaging time. With resolving power R~1,000,000 we determine the center frequency of an iron line in the solar spectrum to sub-MHz absolute frequency uncertainty in under 10 minutes, a fractional precision 1/4000 the linewidth. Additionally, we propose concepts that take advantage of refractive beam shaping to decrease the effects of pointing instabilities by 100x, and of frequency comb multiplexing to increase data acquisition rates and spectral bandwidths by comparable factors. Taken together, our work brings the power of telecommunications photonics and the precision of frequency comb metrology to laser heterodyne radiometry, with implications for solar and astronomical spectroscopy, remote sensing, and precise Doppler velocimetry.
Optical Frequency Comb Calibrated Near Infrared Solar Heterodyne Spectroscopy
by
Connor, Fredrick
,
Olsen, Freja
,
Diddams, Scott
in
Near infrared radiation
,
Optical frequency
,
Resolution
2020
We perform heterodyne spectroscopy at 1.56 micron with a tunable laser and thermal radiation from the Sun. The laser tuning is calibrated with a frequency comb, providing a simple spectrometer with absolute frequency tracebility and resolving power of 2,000,000
Low noise, high repetition rate semiconductor-based mode -locked lasers for signal processing and coherent communications
by
Quinlan, Franklyn John
in
Optics
2008
This dissertation details work on high repetition rate semiconductor mode-locked lasers. The qualities of stable pulse trains and stable optical frequency content are the focus of the work performed. First, applications of such lasers are reviewed with particular attention to applications only realizable with laser performance such as presented in this dissertation. Sources of timing jitter are also reviewed, as are techniques by which the timing jitter of a 10 GHz optical pulse train may be measured. Experimental results begin with an exploration of the consequences on the timing and amplitude jitter of the phase noise of an RF source used for mode-locking. These results lead to an ultralow timing jitter source, with 30 fs of timing jitter (1 Hz to 5 GHz, extrapolated). The focus of the work then shifts to generating a stabilized optical frequency comb. The first technique to generating the frequency comb is through optical injection. It is shown that not only can injection locking stabilize a mode-locked laser to the injection seed, but linewidth narrowing, timing jitter reduction and suppression of superfluous optical supermodes of a harmonically mode-locked laser also result. A scheme by which optical injection locking can be maintained long term is also proposed. Results on using an intracavity etalon for supermode suppression and optical frequency stabilization then follow. An etalon-based actively mode-locked laser is shown to have a timing jitter of only 20 fs (1Hz–5 GHz, extrapolated), optical linewidths below 10 kHz and optical frequency instabilities less than 400 kHz. By adding dispersion compensating fiber, the optical spectrum was broadened to 2 THz and 800 fs duration pulses were obtained. By using the etalon-based actively mode-locked laser as a basis, a completely self-contained frequency stabilized coupled optoelectronic oscillator was built and characterized. By simultaneously stabilizing the optical frequencies and the pulse repetition rate to the etalon, a 10 GHz comb source centered at 1550 nm was realized. This system maintains the high quality performance of the actively mode-locked laser while significantly reducing the size weight and power consumption of the system. This system also has the potential for outperforming the actively mode-locked laser by increasing the finesse and stability of the intracavity etalon. The final chapter of this dissertation outlines the future work on the etalon-based coupled optoelectronic oscillator, including the incorporation of a higher finesse, more stable etalon and active phase noise suppression of the RF signal. Two appendices give details on phase noise measurements that incorporate carrier suppression and the noise model for the coupled optoelectronic oscillator.
Dissertation
Compact, Portable, Thermal-Noise-Limited Optical Cavity with Low Acceleration Sensitivity
by
Diddams, Scott A
,
Davila-Rodriguez, Josue
,
McLemore, Charles A
in
Atomic clocks
,
Broadband
,
Feedback control
2023
We develop and demonstrate a compact (less than \\(6\\) mL) portable Fabry-P\\'{e}rot optical reference cavity. A laser locked to the cavity is thermal noise limited at \\(2\\times10^{-14}\\) fractional frequency stability. Broadband feedback control with an electro-optic modulator enables near thermal-noise-limited phase noise performance from \\(1\\) Hz to \\(10\\) kHz offset frequencies. The additional low vibration, temperature, and holding force sensitivity of our design makes it well suited for out-of-the-lab applications such as optically derived low noise microwave generation, compact and mobile optical atomic clocks, and environmental sensing through deployed fiber networks.
Enabling a multifunctional telecommunications fiber optic network: Ultrastable optical frequency transfer and attosecond timing in deployed multicore fiber
by
Mecozzi, Antonio
,
Antonelli, Cristian
,
Mazur, Mikael
in
Data transmission
,
Fiber optics
,
Frequency stability
2024
The telecommunications industry's deployment of billions of kilometers of optical fiber has created a vast global network that can be exploited for additional applications such as environmental sensing, quantum networking and international clock comparisons. However, for reasons such as the unidirectionality of long-haul fiber links, telecom fiber networks cannot always be adapted for important applications beyond data transmission. Fortunately, new multicore optical fibers create the opportunity for application coexistence with data traffic, creating expansive multifunctional networks. Towards that end, we propose and demonstrate the faithful transfer of ultrastable optical signals through multicore fiber in a way that is compatible with the unidirectionality of long-haul fiber optic systems, demonstrating a fractional frequency instability of 3x10-19 at 10,000 seconds. This opens the door towards intercontinental optical clock comparisons, with applications in fundamental physics and the redefinition of the second.