Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
130 result(s) for "Rödenbeck, Christian"
Sort by:
Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.
How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data
The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as “inter-annual climate sensitivity”. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE–T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.
The reinvigoration of the Southern Ocean carbon sink
Several studies have suggested that the carbon sink in the Southern Ocean—the ocean's strongest region for the uptake of anthropogenic CO2—has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012 the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized.
Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability
Global fluctuations in annual land carbon uptake (NEE IAV ) depend on water and temperature variability, yet debate remains about local and seasonal controls of the global dependences. Here, we quantify regional and seasonal contributions to the correlations of globally-averaged NEE IAV against terrestrial water storage (TWS) and temperature, and respective uncertainties, using three approaches: atmospheric inversions, process-based vegetation models, and data-driven models. The three approaches agree that the tropics contribute over 63% of the global correlations, but differ on the dominant driver of the global NEE IAV , because they disagree on seasonal temperature effects in the Northern Hemisphere (NH, >25°N). In the NH, inversions and process-based models show inter-seasonal compensation of temperature effects, inducing a global TWS dominance supported by observations. Data-driven models show weaker seasonal compensation, thereby estimating a global temperature dominance. We provide a roadmap to fully understand drivers of global NEE IAV and discuss their implications for future carbon–climate feedbacks. The dominant driver of variations in global land carbon sink remains unclear. Here the authors show that the seasonal compensation of temperature effects on land carbon sink in the Northern Hemisphere could induce a global water dominance.
Saturation of the Southern Ocean CO₂ Sink Due to Recent Climate Change
Based on observed atmospheric carbon dioxide (CO₂) concentration and an inverse method, we estimate that the Southern Ocean sink of CO₂ has weakened between 1981 and 2004 by 0.08 petagrams of carbon per year per decade relative to the trend expected from the large increase in atmospheric CO₂. We attribute this weakening to the observed increase in Southern Ocean winds resulting from human activities, which is projected to continue in the future. Consequences include a reduction of the efficiency of the Southern Ocean sink of CO₂ in the short term (about 25 years) and possibly a higher level of stabilization of atmospheric CO₂ on a multicentury time scale.
Reduction in Earth’s carbon budget imbalance
The Global Carbon Project (GCP) compiles an updated global carbon budget each year, synthesizing state‑of‑the‑art estimates of anthropogenic CO 2 emissions, land and ocean sinks, and the atmospheric CO 2 growth rate. The residual between these terms, referred to as the global carbon budget imbalance, reflects the aggregate inaccuracies of the individual component estimates. Growth rates derived from marine boundary layer (MBL) surface flask mixing ratio observations are assumed to be highly accurate. Hence, land and ocean sink estimates from process models are viewed as the primary source of the imbalance. Here we show that substantial discrepancies arise when marine boundary layer growth rate estimates are used to represent the whole atmosphere. Correcting for this discrepancy using atmospheric flux inversion estimates reduces the 0.76 petagrams of carbon per year (PgC yr −1 ) root-mean-square (RMS) imbalance (from the 2023 GCP report) by up to 25%. Further investigation into the imbalance metric between the 2017 and 2023 GCP reports shows a reduction in imbalance resulting from updates to each carbon budget component, leading to a 16% overall reduction. These reductions provide quantitative evidence of improvements in process models and inventory emission estimates, driven by enhanced forcing data and the inclusion of new carbon cycle processes. Overall, we report a 37% reduction in the root-mean-square imbalance, from 0.91 to 0.57 PgC yr −1 , between the 2017 and 2023 GCP reports by combining process model and inventory improvements with atmospheric growth rate corrections. Our findings indicate that land and ocean process models are more accurate than previously believed and that the scientific understanding of Earth’s carbon cycle is improving. Scientists show that refinements to atmospheric CO 2 growth rates and improved models of land and ocean carbon sinks have significantly reduced a long-standing gap in the global carbon budget, boosting confidence in climate science
The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015
Atmospheric inversions have been used for the past two decades to derive large-scale constraints on the sources and sinks of CO2 into the atmosphere. The development of dense in situ surface observation networks, such as ICOS in Europe, enables in theory inversions at a resolution close to the country scale in Europe. This has led to the development of many regional inversion systems capable of assimilating these high-resolution data, in Europe and elsewhere. The EUROCOM (European atmospheric transport inversion comparison) project is a collaboration between seven European research institutes, which aims at producing a collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in Europe for the period 2006–2015. It aims in particular at investigating the capacity of the inversions to deliver consistent flux estimates from the country scale up to the continental scale. The project participants were provided with a common database of in situ-observed CO2 concentrations (including the observation sites that are now part of the ICOS network) and were tasked with providing their best estimate of the net terrestrial carbon flux for that period, and for a large domain covering the entire European Union. The inversion systems differ by the transport model, the inversion approach, and the choice of observation and prior constraints, enabling us to widely explore the space of uncertainties. This paper describes the intercomparison protocol and the participating systems, and it presents the first results from a reference set of inversions, at the continental scale and in four large regions. At the continental scale, the regional inversions support the assumption that European ecosystems are a relatively small sink (-0.21±0.2 Pg C yr−1). We find that the convergence of the regional inversions at this scale is not better than that obtained in state-of-the-art global inversions. However, more robust results are obtained for sub-regions within Europe, and in these areas with dense observational coverage, the objective of delivering robust country-scale flux estimates appears achievable in the near future.
Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget
Based on the 2019 assessment of the Global Carbon Project, the ocean took up on average, 2.5+/-0.6PgCyr-1 or 23+/-5% of the total anthropogenic CO2 emissions over the decade 2009-2018. This sink estimate is based on global ocean biogeochemical models (GOBMs) and is compared to data-products based on surface ocean pCO2 (partial pressure of CO2) observations accounting for the outgassing of river-derived CO2. Here we evaluate the GOBM simulations by comparing the simulated pCO2 to observations. The simulations are well suited for quantifying the global ocean carbon sink on the time-scale of the annual mean and its multi-decadal trend (RMSE <20 μatm), as well as on the time-scale of multi-year variability (RMSE <10 μatm), despite the large model-data mismatch on the seasonal time-scale (RMSE of 20-80 μatm). Biases in GOBMs have a small effect on the global mean ocean sink (0.05 PgC yr−1), but need to be addressed to improve the regional budgets and model-data comparison. Accounting for non-mapped areas in the data-products reduces their spread as measured by the standard deviation by a third. There is growing evidence and consistency among methods with regard to the patterns of the multi-year variability of the ocean carbon sink, with a global stagnation in the 1990s and an extra-tropical strengthening in the 2000s. GOBMs and data-products point consistently to a shift from a tropical CO2 source to a CO2 sink in recent years. On average, the GOBMs reveal less variations in the sink than the data-based products. Despite the reasonable simulation of surface ocean pCO2 by the GOBMs, there are discrepancies between the resulting sink estimate from GOBMs and data-products. These discrepancies are within the uncertainty of the river flux adjustment, increase over time, and largely stem from the Southern Ocean. Progress in our understanding of the global ocean carbon sink necessitates significant advancement in modelling and observing the Southern Ocean including (i) a game-changing increase in high-quality pCO2 observations, and (ii) a critical re-evaluation of the regional river flux adjustment.
European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling
Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO–EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models. The relationship between terrestrial carbon sinks and atmospheric modes of variability remains uncertain. Here, the authors show that the coupling of the North Atlantic Oscillation and East-Atlantic patterns explains variations in the European CO 2 sink from 1982 to 2012.
Impact of climate change and variability on the global oceanic sink of CO2
About one quarter of the CO2 emitted to the atmosphere by human activities is absorbed annually by the ocean. All the processes that influence the oceanic uptake of CO2 are controlled by climate. Hence changes in climate (both natural and human‐induced) are expected to alter the uptake of CO2 by the ocean. However, available information that constrains the direction, magnitude, or rapidity of the response of ocean CO2 to changes in climate is limited. We present an analysis of oceanic CO2 trends for 1981 to 2007 from data and a model. Our analysis suggests that the global ocean responded to recent changes in climate by outgassing some preindustrial carbon, in part compensating the oceanic uptake of anthropogenic CO2. Using a model, we estimate that climate change and variability reduced the CO2 uptake by 12% compared to a simulation where constant climate is imposed, and offset 63% of the trend in response to increasing atmospheric CO2 alone. The response is caused by changes in wind patterns and ocean warming, with important nonlinear effects that amplify the response of oceanic CO2 to changes in climate by > 30%.