Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
78 result(s) for "R. Akutsu"
Sort by:
Measurements of neutrino oscillation parameters from the T2K experiment using Formula omitted protons on target
The T2K experiment presents new measurements of neutrino oscillation parameters using [Formula omitted] protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional [Formula omitted] POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on [Formula omitted] and the impact of priors on the [Formula omitted] measurement. Both analyses prefer the normal mass ordering and upper octant of [Formula omitted] with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on [Formula omitted] from reactors, [Formula omitted] using Feldman-Cousins corrected intervals, and [Formula omitted] using constant [Formula omitted] intervals. The CP-violating phase is constrained to [Formula omitted] using Feldman-Cousins corrected intervals, and [Formula omitted] is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than [Formula omitted] credible level using a flat prior in [Formula omitted] and just below [Formula omitted] using a flat prior in [Formula omitted] When the external constraint on [Formula omitted] is removed, [Formula omitted] in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.
Amorphophallus konjac: A Novel Alternative Flour on Gluten-Free Bread
The demand for gluten-free products is rising, but their production with similar quality as their gluten counterparts is challenging. This study aimed to develop gluten-free bread samples using different concentrations of Amorphophallus konjac flour (0%, 12.5%, 25%, 37.5%, and 50% of the total flour content) and to evaluate their nutritional and physicochemical properties. Proteins, lipids, carbohydrates, moisture, ash content, fibers, resistant starch, firmness, specific volume, and color were evaluated using official methods. Protein varied from 2.95% to 4.94%, the energy value from 347.93 to 133.55 kcal/100 g, dietary fiber from 8.19 to 17.90%, and resistant starch from 0.67% to 0.75% on wet basis. The addition of konjac flour positively influenced the specific volume. Higher concentrations of konjac flour in the formulations led to lower calories of the bread due to the significant addition of water to the dough. The bread samples with konjac showed high fiber content due to the composition of the flour. They had lower levels of carbohydrates, which can positively influence the glycemic index. Konjac flour provided dough mold, growth, and better texture for gluten-free bread. The best formulations were prepared in concentrations up to 37.5% konjac. The 50% konjac bread showed slightly reduced specific volume and pale color.
Measurements of neutrino oscillation parameters from the T2K experiment using 3.6 × 10 21 protons on target
The T2K experiment presents new measurements of neutrino oscillation parameters using protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on and the impact of priors on the measurement. Both analyses prefer the normal mass ordering and upper octant of with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on from reactors, using Feldman-Cousins corrected intervals, and using constant intervals. The CP-violating phase is constrained to using Feldman-Cousins corrected intervals, and is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than credible level using a flat prior in and just below using a flat prior in When the external constraint on is removed, in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.
Measurements of neutrino oscillation parameters from the T2K experiment using 3.6× 10²¹ 3.6×1021 protons on target
The T2K experiment presents new measurements of neutrino oscillation parameters using $$19.7(16.3)\\times 10^{20}$$ 19.7(16.3)×1020 protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional $$4.7\\times 10^{20}$$ 4.7×1020 POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on $$\\sin ^2\\theta _{13}$$ sin2θ13 and the impact of priors on the $$\\delta _{\\textrm{CP}}$$ δCP measurement. Both analyses prefer the normal mass ordering and upper octant of $$\\sin ^2\\theta _{23}$$ sin2θ23 with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on $$\\sin ^2\\theta _{13}$$ sin2θ13 from reactors, $$\\sin ^2\\theta _{23}=0.561^{+0.021}_{-0.032}$$ sin2θ23=0.561-0.032+0.021 using Feldman–Cousins corrected intervals, and $$\\varDelta {}m^2_{32}=2.494_{-0.058}^{+0.041}\\times 10^{-3}~\\text {eV}^2$$ Δm322=2.494-0.058+0.041×10-3eV2 using constant $$\\varDelta \\chi ^{2}$$ Δχ2 intervals. The CP-violating phase is constrained to $$\\delta _{\\textrm{CP}}=-1.97_{-0.70}^{+0.97}$$ δCP=-1.97-0.70+0.97 using Feldman–Cousins corrected intervals, and $$\\delta _{\\textrm{CP}}=0,\\pi $$ δCP=0,π is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than $$2\\sigma $$ 2σ credible level using a flat prior in $$\\delta _{\\textrm{CP}},$$ δCP, and just below $$2\\sigma $$ 2σ using a flat prior in $$\\sin \\delta _{\\textrm{CP}}.$$ sinδCP. When the external constraint on $$\\sin ^2\\theta _{13}$$ sin2θ13 is removed, $$\\sin ^2\\theta _{13}=28.0^{+2.8}_{-6.5}\\times 10^{-3},$$ sin2θ13=28.0-6.5+2.8×10-3, in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.
Measurements of neutrino oscillation parameters from the T2K experiment using $$3.6\\times 10^{21}$$ 3.6 × 10 21 protons on target
Abstract The T2K experiment presents new measurements of neutrino oscillation parameters using $$19.7(16.3)\\times 10^{20}$$ 19.7 ( 16.3 ) × 10 20 protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional $$4.7\\times 10^{20}$$ 4.7 × 10 20 POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on $$\\sin ^2\\theta _{13}$$ sin 2 θ 13 and the impact of priors on the $$\\delta _{\\textrm{CP}}$$ δ CP measurement. Both analyses prefer the normal mass ordering and upper octant of $$\\sin ^2\\theta _{23}$$ sin 2 θ 23 with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on $$\\sin ^2\\theta _{13}$$ sin 2 θ 13 from reactors, $$\\sin ^2\\theta _{23}=0.561^{+0.021}_{-0.032}$$ sin 2 θ 23 = 0 . 561 - 0.032 + 0.021 using Feldman–Cousins corrected intervals, and $$\\varDelta {}m^2_{32}=2.494_{-0.058}^{+0.041}\\times 10^{-3}~\\text {eV}^2$$ Δ m 32 2 = 2 . 494 - 0.058 + 0.041 × 10 - 3 eV 2 using constant $$\\varDelta \\chi ^{2}$$ Δ χ 2 intervals. The CP-violating phase is constrained to $$\\delta _{\\textrm{CP}}=-1.97_{-0.70}^{+0.97}$$ δ CP = - 1 . 97 - 0.70 + 0.97 using Feldman–Cousins corrected intervals, and $$\\delta _{\\textrm{CP}}=0,\\pi $$ δ CP = 0 , π is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than $$2\\sigma $$ 2 σ credible level using a flat prior in $$\\delta _{\\textrm{CP}},$$ δ CP , and just below $$2\\sigma $$ 2 σ using a flat prior in $$\\sin \\delta _{\\textrm{CP}}.$$ sin δ CP . When the external constraint on $$\\sin ^2\\theta _{13}$$ sin 2 θ 13 is removed, $$\\sin ^2\\theta _{13}=28.0^{+2.8}_{-6.5}\\times 10^{-3},$$ sin 2 θ 13 = 28 . 0 - 6.5 + 2.8 × 10 - 3 , in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.
Measurements of ν̅ μ and ν̅ μ + ν μ charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV
We report measurements of the flux-integrated ν̅μ and ν̅μ + νμ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced$\\mu^\\pm$and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region,$p_{\\mu}>400~{\\rm MeV}/c$and$\\theta_{\\mu}<30^{\\circ}$ , in the laboratory frame. An absence of pions and protons in the detectable phase spaces of$p_{\\pi}>200~{\\rm MeV}/c$ ,$\\theta_{\\pi}<70^{\\circ}$and$p_{\\rm p}>600~{\\rm MeV}/c$ ,$\\theta_{\\rm p}<70^{\\circ}$is required. In this paper, both the$\\overline{\\nu}_\\mu$cross-sections and$\\overline{\\nu}_\\mu+\\nu_\\mu$cross-sections on water and hydrocarbon targets and their ratios are provided by using the D’Agostini unfolding method. The results of the integrated$\\overline{\\nu}_\\mu$cross-section measurements over this phase space are$\\sigma_{\\rm H_{2}O}=(1.082\\pm0.068(\\rm stat.)^{+0.145}_{-0.128}(\\rm syst.)) \\times 10^{-39}\\,{\\rm cm^{2} / nucleon}$ ,$\\sigma_{\\rm CH}=(1.096\\pm0.054(\\rm stat.)^{+0.132}_{-0.117}(\\rm syst.)) \\times 10^{-39}\\,{\\rm cm^{2} / nucleon}$ , and$\\sigma_{\\rm H_{2}O}/\\sigma_{\\rm CH} = 0.987\\pm0.078(\\rm stat.)^{+0.093}_{-0.090}(\\rm syst.)$ . The$\\overline{\\nu}_\\mu+\\nu_\\mu$cross-section is$\\sigma_{\\rm H_{2}O} = (1.155\\pm0.064(\\rm stat.)^{+0.148}_{-0.129}(\\rm syst.)) \\times 10^{-39}\\,{\\rm cm^{2} / nucleon}$ ,$\\sigma_{\\rm CH}=(1.159\\pm0.049(\\rm stat.)^{+0.129}_{-0.115}(\\rm syst.)) \\times 10^{-39}\\,{\\rm cm^{2} / nucleon}$ , and$\\sigma_{\\rm H_{2}O}/\\sigma_{\\rm CH}=0.996\\pm0.069(\\rm stat.)^{+0.083}_{-0.078}(\\rm syst.)$ .
White Paper on Light Sterile Neutrino Searches and Related Phenomenology
This white paper provides a comprehensive review of our present understanding of experimental neutrino anomalies that remain unresolved, charting the progress achieved over the last decade at the experimental and phenomenological level, and sets the stage for future programmatic prospects in addressing those anomalies. It is purposed to serve as a guiding and motivational \"encyclopedic\" reference, with emphasis on needs and options for future exploration that may lead to the ultimate resolution of the anomalies. We see the main experimental, analysis, and theory-driven thrusts that will be essential to achieving this goal being: 1) Cover all anomaly sectors -- given the unresolved nature of all four canonical anomalies, it is imperative to support all pillars of a diverse experimental portfolio, source, reactor, decay-at-rest, decay-in-flight, and other methods/sources, to provide complementary probes of and increased precision for new physics explanations; 2) Pursue diverse signatures -- it is imperative that experiments make design and analysis choices that maximize sensitivity to as broad an array of these potential new physics signatures as possible; 3) Deepen theoretical engagement -- priority in the theory community should be placed on development of standard and beyond standard models relevant to all four short-baseline anomalies and the development of tools for efficient tests of these models with existing and future experimental datasets; 4) Openly share data -- Fluid communication between the experimental and theory communities will be required, which implies that both experimental data releases and theoretical calculations should be publicly available; and 5) Apply robust analysis techniques -- Appropriate statistical treatment is crucial to assess the compatibility of data sets within the context of any given model.
Atmospheric neutrino oscillation analysis with neutron tagging and an expanded fiducial volume in Super-Kamiokande I-V
We present a measurement of neutrino oscillation parameters with the Super-Kamiokande detector using atmospheric neutrinos from the complete pure-water SK I-V (April 1996-July 2020) data set, including events from an expanded fiducial volume. The data set corresponds to 6511.3 live days and an exposure of 484.2 kiloton-years. Measurements of the neutrino oscillation parameters \\(\\Delta m^2_{32}\\), \\(\\sin^2\\theta_{23}\\), \\(\\sin^2 \\theta_{13}\\), \\(\\delta_{CP}\\), and the preference for the neutrino mass ordering are presented with atmospheric neutrino data alone, and with constraints on \\(\\sin^2 \\theta_{13}\\) from reactor neutrino experiments. Our analysis including constraints on \\(\\sin^2 \\theta_{13}\\) favors the normal mass ordering at the 92.3% level.
Pre-Supernova Alert System for Super-Kamiokande
In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient core-collapse supernovae through detection of electron anti-neutrinos from thermal and nuclear processes responsible for the cooling of massive stars before the gravitational collapse of their cores. These pre-supernova neutrinos emitted during the silicon burning phase can exceed the energy threshold for IBD reactions. We present the sensitivity of SK-Gd to pre-supernova stars and the techniques used for the development of a pre-supernova alarm based on the detection of these neutrinos in SK, as well as prospects for future SK-Gd phases with higher concentrations of Gd. For the current SK-Gd phase, high-confidence alerts for Betelgeuse could be issued up to nine hours in advance of the core-collapse itself.
Search for solar electron anti-neutrinos due to spin-flavor precession in the Sun with Super-Kamiokande-IV
Due to a very low production rate of electron anti-neutrinos (\\(\\bar{\\nu}_e\\)) via nuclear fusion in the Sun, a flux of solar \\(\\bar{\\nu}_e\\) is unexpected. An appearance of \\(\\bar{\\nu}_e\\) in solar neutrino flux opens a new window for the new physics beyond the standard model. In particular, a spin-flavor precession process is expected to convert an electron neutrino into an electron anti-neutrino (\\({\\nu_e\\to\\bar{\\nu}_e}\\)) when neutrino has a finite magnetic moment. In this work, we have searched for solar \\(\\bar{\\nu}_e\\) in the Super-Kamiokande experiment, using neutron tagging to identify their inverse beta decay signature. We identified 78 \\(\\bar{\\nu}_e\\) candidates for neutrino energies of 9.3 to 17.3 MeV in 2970.1 live days with a fiducial volume of 22.5 kiloton water (183.0 kton\\(\\cdot\\)year exposure). The energy spectrum has been consistent with background predictions and we thus derived a 90% confidence level upper limit of \\({4.7\\times10^{-4}}\\) on the \\(\\nu_e\\to\\bar{\\nu}_e\\) conversion probability in the Sun. We used this result to evaluate the sensitivity of future experiments, notably the Super-Kamiokande Gadolinium (SK-Gd) upgrade.