Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Raanan, Hagai"
Sort by:
Metal availability and the expanding network of microbial metabolisms in the Archaean eon
Microbial metabolisms depend on enzymes that contain trace metals. A synthesis of molecular and geochemical data shows that these metabolic pathways evolved alongside changing marine availability of trace metals during the Precambrian. Life is based on energy gained by electron-transfer processes; these processes rely on oxidoreductase enzymes, which often contain transition metals in their structures. The availability of different metals and substrates has changed over the course of Earth's history as a result of secular changes in redox conditions, particularly global oxygenation. New metabolic pathways using different transition metals co-evolved alongside changing redox conditions. Sulfur reduction, sulfate reduction, methanogenesis and anoxygenic photosynthesis appeared between about 3.8 and 3.4 billion years ago. The oxidoreductases responsible for these metabolisms incorporated metals that were readily available in Archaean oceans, chiefly iron and iron–sulfur clusters. Oxygenic photosynthesis appeared between 3.2 and 2.5 billion years ago, as did methane oxidation, nitrogen fixation, nitrification and denitrification. These metabolisms rely on an expanded range of transition metals presumably made available by the build-up of molecular oxygen in soil crusts and marine microbial mats. The appropriation of copper in enzymes before the Great Oxidation Event is particularly important, as copper is key to nitrogen and methane cycling and was later incorporated into numerous aerobic metabolisms. We find that the diversity of metals used in oxidoreductases has increased through time, suggesting that surface redox potential and metal incorporation influenced the evolution of metabolism, biological electron transfer and microbial ecology.
Activation of Tm‐22 resistance is mediated by a conserved cysteine essential for tobacco mosaic virus movement
The tomato Tm‐22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm‐22, damaging tomato production worldwide. Tm‐22 encodes a nucleotide‐binding leucine‐rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV) enabled the virus to overcome Tm‐22‐mediated resistance. Yet, it was unknown how Tm‐22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV) plays a dual role in Tm‐22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm‐22‐mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae‐infecting tobamoviruses except ToBRFV and localizes to a predicted jelly‐roll fold common to various MPs. Cell‐to‐cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm‐22 immune activation could explain how TMV was unable to overcome this resistance for such a long period. A conserved cysteine (C68) in the movement protein of tobacco mosaic virus plays a dual role in cell‐to‐cell transport and the activation of Tm‐22‐mediated resistance.
Small protein folds at the root of an ancient metabolic network
Life on Earth is driven by electron transfer reactions catalyzed by a suite of enzymes that comprise the superfamily of oxidoreductases (Enzyme Classification EC1). Most modern oxidoreductases are complex in their structure and chemistry and must have evolved from a small set of ancient folds. Ancient oxidoreductases from the Archean Eon between ca. 3.5 and 2.5 billion years ago have been long extinct, making it challenging to retrace evolution by sequence-based phylogeny or ancestral sequence reconstruction. However, three-dimensional topologies of proteins change more slowly than sequences. Using comparative structure and sequence profile-profile alignments, we quantify the similarity between proximal cofactor-binding folds and show that they are derived from a common ancestor. We discovered that two recurring folds were central to the origin of metabolism: ferredoxin and Rossmann-like folds. In turn, these two folds likely shared a common ancestor that, through duplication, recruitment, and diversification, evolved to facilitate electron transfer and catalysis at a very early stage in the origin of metabolism.
Reading and surviving the harsh conditions in desert biological soil crust: the cyanobacterial viewpoint
Abstract Biological soil crusts (BSCs) are found in drylands, cover ∼12% of the Earth's surface in arid and semi-arid lands and their destruction is considered an important promoter of desertification. These crusts are formed by the adhesion of soil particles to polysaccharides excreted mostly by filamentous cyanobacteria, which are the pioneers and main primary producers in BSCs. Desert BSCs survive in one of the harshest environments on Earth, and are exposed to daily fluctuations of extreme conditions. The cyanobacteria inhabiting these habitats must precisely read the changing conditions and predict, for example, the forthcoming desiccation. Moreover, they evolved a comprehensive regulation of multiple adaptation strategies to enhance their stress tolerance. Here, we focus on what distinguishes cyanobacteria able to revive after dehydration from those that cannot. While important progress has been made in our understanding of physiological, biochemical and omics aspects, clarification of the sensing, signal transduction and responses enabling desiccation tolerance are just emerging. We plot the trajectory of current research and open questions ranging from general strategies and regulatory adaptations in the hydration/desiccation cycle, to recent advances in our understanding of photosynthetic adaptation. The acquired knowledge provides new insights to mitigate desertification and improve plant productivity under drought conditions. Cyanobacteria inhabiting desert biological soil crusts, one of the harshest environments on Earth, have evolved mechanisms for predicting, sensing, signal transduction and cellular responses enabling their vegetative cells to cope with daily hydration/desiccation cycles and extreme conditions.
Allelic variations in the chpG effector gene within Clavibacter michiganensis populations determine pathogen host range
Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG ( chpG C ), an effector that is recognized in eggplant. Introduction of chpG C into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm 101 , failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm 101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.
The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance
Excess illumination damages the photosynthetic apparatus with severe implications with regard to plant productivity. Unlike model organisms, the growth of Chlorella ohadii, isolated from desert soil crust, remains unchanged and photosynthetic O2 evolution increases, even when exposed to irradiation twice that of maximal sunlight. Spectroscopic, biochemical and molecular approaches were applied to uncover the mechanisms involved. D1 protein in photosystem II (PSII) is barely degraded, even when exposed to antibiotics that prevent its replenishment. Measurements of various PSII parameters indicate that this complex functions differently from that in model organisms and suggest that C. ohadii activates a nonradiative electron recombination route which minimizes singlet oxygen formation and the resulting photoinhibition. The light-harvesting antenna is very small and carotene composition is hardly affected by excess illumination. Instead of succumbing to photodamage, C. ohadii activates additional means to dissipate excess light energy. It undergoes major structural, compositional and physiological changes, leading to a large rise in photosynthetic rate, lipids and carbohydrate content and inorganic carbon cycling. The ability of C. ohadii to avoid photodamage relies on a modified function of PSII and the dissipation of excess reductants downstream of the photosynthetic reaction centers. The biotechnological potential as a gene source for crop plant improvement is self-evident.
Modular origins of biological electron transfer chains
Oxidoreductases catalyze electron transfer reactions that ultimately provide the energy for life. A limited set of ancestral protein-metal modules are presumably the building blocks that evolved into this diverse protein family. However, the identity of these modules and their path to modern oxidoreductases is unknown. Using a comparative structural analysis approach, we identify a set of fundamental electron transfer modules that have evolved to form the extant oxidoreductases. Using transition metal-containing cofactors as fiducial markers, it is possible to cluster cofactor microenvironments into as few as four major modules: bacterial ferredoxin, cytochrome c, symerythrin, and plastocyanin-type folds. From structural alignments, it is challenging to ascertain whether modules evolved from a single common ancestor (homology) or arose by independent convergence on a limited set of structural forms (analogy). Additional insight into common origins is contained in the spatial adjacency network (SPAN), which is based on proximity of modules in oxidoreductases containing multiple cofactor electron transfer chains. Electron transfer chains within complex modern oxidoreductases likely evolved through repeated duplication and diversification of ancient modular units that arose in the Archean eon.
Light-Induced Changes within Photosystem II Protects Microcoleus sp. in Biological Desert Sand Crusts against Excess Light
The filamentous cyanobacterium Microcoleus vaginatus, a major primary producer in desert biological sand crusts, is exposed to frequent hydration (by early morning dew) followed by desiccation during potentially damaging excess light conditions. Nevertheless, its photosynthetic machinery is hardly affected by high light, unlike “model” organisms whereby light-induced oxidative stress leads to photoinactivation of the oxygen-evolving photosystem II (PSII). Field experiments showed a dramatic decline in the fluorescence yield with rising light intensity in both drying and artificially maintained wet plots. Laboratory experiments showed that, contrary to “model” organisms, photosynthesis persists in Microcoleus sp. even at light intensities 2–3 times higher than required to saturate oxygen evolution. This is despite an extensive loss (85–90%) of variable fluorescence and thermoluminescence, representing radiative PSII charge recombination that promotes the generation of damaging singlet oxygen. Light induced loss of variable fluorescence is not inhibited by the electron transfer inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropylbenzoqui​none (DBMIB), nor the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazon​e (FCCP), thus indicating that reduction of plastoquinone or O2, or lumen acidification essential for non-photochemical quenching (NPQ) are not involved. The rate of QA− re-oxidation in the presence of DCMU is enhanced with time and intensity of illumination. The difference in temperatures required for maximal thermoluminescence emissions from S2/QA− (Q band, 22°C) and S2,3/QB− (B band, 25°C) charge recombinations is considerably smaller in Microcoleus as compared to “model” photosynthetic organisms, thus indicating a significant alteration of the S2/QA− redox potential. We propose that enhancement of non-radiative charge recombination with rising light intensity may reduce harmful radiative recombination events thereby lowering 1O2 generation and oxidative photodamage under excess illumination. This effective photo-protective mechanism was apparently lost during the evolution from the ancestor cyanobacteria to the higher plant chloroplast.
Towards a dryland biocontrol agent: Exploring the potential of the soil cyanobacterium Leptolyngbya ohadii isolated from biological soil crusts
Soil-borne pathogens cause severe diseases in many crops around the world. Due to the harmful nature of the chemical pesticides used against such pathogens, extensive research has focused on developing sustainable solutions such as biocontrol agents. Nevertheless, the complex interaction of such agents with their biotic and abiotic environment is challenging. Filamentous cyanobacteria, the pioneers and main primary producers in biological soil crusts (BSC), show considerable tolerance to extreme environmental conditions within the crust. Soil inoculation with cyanobacteria is a promising practice for sustainable agriculture in drylands where high tolerant organisms is required. Nevertheless, its plant protection potential has been less explored. Cyanobacteria such as Leptolyngbya ohadii, a dominant species in the BSC of the northwest Negev desert, Israel, are known to produce a large array of secondary metabolites. Application of L.ohadii spent media severely inhibits the growth of various prokaryotes and eukaryotes. Its resilience and the observed antimicrobial activity thus make L.ohadii a promising candidate for the development of a biocontrol agent. However, little is known about the effect of environmental conditions on its antimicrobial activity. Here we examined the antifungal activity of L.ohadii on a range of soil-borne fungal pathogens. We assessed the effect of the daily hydration/dehydration cycle of its natural habitat on the expression of gene clusters for secondary metabolites production using a novel custom-made environmental conditions simulation chamber. Our data advance the understanding of the complex interaction of L.ohadii with its biotic and abiotic environment for application as a dryland biocontrol agent.
Biophysical analysis of the structural evolution of substrate specificity in RuBisCO
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant enzyme on Earth. However, its catalytic rate per molecule of protein is extremely slow and the binding of the primary substrate, CO₂, is competitively displaced by O₂. Hence, carbon fixation by RuBisCO is highly inefficient; indeed, in higher C3 plants, about 30% of the time the enzyme mistakes CO₂ for O₂. Using genomic and structural analysis, we identify regions around the catalytic site that play key roles in discriminating between CO₂ and O₂. Our analysis identified positively charged cavities directly around the active site, which are expanded as the enzyme evolved with higher substrate specificity. The residues that extend these cavities have recently been under selective pressure, indicating that larger charged pockets are a feature of modern RuBisCOs, enabling greater specificity for CO₂. This paper identifies a key structural feature that enabled the enzyme to evolve improved CO₂ sequestration in an oxygen-rich atmosphere and may guide the engineering of more efficient RuBisCOs.