Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "Rackham, B V"
Sort by:
Helium in the eroding atmosphere of an exoplanet
Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres 1 . Searches for helium, however, have hitherto been unsuccessful 2 . Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant 3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 ± 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 10 10 to 3 × 10 11 grams per second (0.1–4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure. A detection of helium absorption at 10,833 Å on the exoplanet WASP-107b reveals that its atmosphere is extended and eroding, and demonstrates a new way to study upper exoplanetary atmospheres.
Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM
Transmission spectroscopy 1 – 3 of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres 4 , 5 . However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations’ relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species—in particular the primary carbon-bearing molecules 6 , 7 . Here we report a broad-wavelength 0.5–5.5 µm atmospheric transmission spectrum of WASP-39b 8 , a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec’s PRISM mode 9 as part of the JWST Transiting Exoplanet Community Early Release Science Team Program 10 – 12 . We robustly detect several chemical species at high significance, including Na (19 σ ), H 2 O (33 σ ), CO 2 (28 σ ) and CO (7 σ ). The non-detection of CH 4 , combined with a strong CO 2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO 2 (2.7 σ ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST’s sensitivity to a rich diversity of exoplanet compositions and chemical processes. A broad-wavelength 0.5–5.5 µm atmospheric transmission spectrum of WASP-39b, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, demonstrates JWST’s sensitivity to a rich diversity of exoplanet compositions and chemical processes.
Helium in the eroding atmosphere of an exoplanet
Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres.sup.1. Searches for helium, however, have hitherto been unsuccessful.sup.2. Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant.sup.3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 [plus or minus] 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 10.sup.10 to 3 × 10.sup.11 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.
Helium in the eroding atmosphere of an exoplanet
Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres.sup.1. Searches for helium, however, have hitherto been unsuccessful.sup.2. Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant.sup.3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 [plus or minus] 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 10.sup.10 to 3 × 10.sup.11 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.
Helium in the eroding atmosphere of an exoplanet
Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres.sup.1. Searches for helium, however, have hitherto been unsuccessful.sup.2. Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant.sup.3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 [plus or minus] 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 10.sup.10 to 3 × 10.sup.11 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.
HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h
TRAPPIST-1 is a nearby ultra-cool dwarf star transited by seven rocky planets. We observed three transits of its outermost planet, TRAPPIST-1h, using the G141 grism of the Wide Field Camera 3 instrument aboard the Hubble Space Telescope to place constraints on its potentially cold atmosphere. In order to deal with the effect of stellar contamination, we model TRAPPIST-1 active regions as portions of a cooler and a hotter photosphere, and generate multi-temperature models that we compare to the out-of-transit spectrum of the star. Using the inferred spot parameters, we produce corrected transmission spectra for planet h under five transit configurations and compare these data to planetary atmospheric transmission models using the forward model CHIMERA. Our analysis reveals that TRAPPIST-1h is unlikely to host an aerosol-free H/He-dominated atmosphere. While the current data precision limits the constraints we can put on the planetary atmosphere, we find that the likeliest scenario is that of a flat, featureless transmission spectrum in the WFC3/G141 bandpass due to a high mean molecular weight atmosphere (>1000x solar), no atmosphere, or an opaque aerosol layer, all in absence of stellar contamination. This work outlines the limitations of modeling active photospheric regions with theoretical stellar spectra, and those brought by our lack of knowledge of the photospheric structure of ultracool dwarf stars. Further characterization of the planetary atmosphere of TRAPPIST-1h would require higher precision measurements over wider wavelengths, which will be possible with the James Webb Space Telescope.
TESS discovery of two super-Earths orbiting the M-dwarf stars TOI-6002 and TOI-5713 near the radius valley
We present the validation of two TESS super-Earth candidates transiting the mid-M dwarfs TOI-6002 and TOI-5713 every 10.90 and 10.44 days, respectively. The first star (TOI-6002) is located \\(32.038\\pm0.019\\) pc away, with a radius of \\(0.2409^{+0.0066}_{-0.0065}\\) \\rsun, a mass of \\(0.2105^{+0.0049}_{-0.0048}\\) \\msun, and an effective temperature of \\(3229^{+77}_{-57}\\) K. The second star (TOI-5713) is located \\(40.946\\pm0.032\\) pc away, with a radius of \\(0.2985^{+0.0073}_{-0.0072}\\) \\rsun, a mass of \\(0.2653\\pm0.0061\\) \\msun, and an effective temperature of \\(3225^{+41}_{-40}\\) K. We validated the planets using TESS data, ground-based multi-wavelength photometry from many ground-based facilities, as well as high-resolution AO observations from Keck/NIRC2. TOI-6002 b has a radius of \\(1.65^{+0.22}_{-0.19}\\) \\re\\ and receives \\(1.77^{+0.16}_{-0.11} S_\\oplus\\). TOI-5713 b has a radius of \\(1.77_{-0.11}^{+0.13} \\re\\) and receives \\(2.42\\pm{0.11} S_\\oplus\\). Both planets are located near the radius valley and near the inner edge of the habitable zone of their host stars, which makes them intriguing targets for future studies to understand the formation and evolution of small planets around M-dwarf stars.
TOI-4336 A b: A temperate sub-Neptune ripe for atmospheric characterization in a nearby triple M-dwarf system
Small planets transiting bright nearby stars are essential to our understanding of the formation and evolution of exoplanetary systems. However, few constitute prime targets for atmospheric characterization, and even fewer are part of multiple star systems. This work aims to validate TOI-4336 A b, a sub-Neptune-sized exoplanet candidate identified by the TESS space-based transit survey around a nearby M-dwarf. We validate the planetary nature of TOI-4336 A b through the global analysis of TESS and follow-up multi-band high-precision photometric data from ground-based telescopes, medium- and high-resolution spectroscopy of the host star, high-resolution speckle imaging, and archival images. The newly discovered exoplanet TOI-4336 A b has a radius of 2.1\\(\\pm\\)0.1R\\(_{\\oplus}\\). Its host star is an M3.5-dwarf star of mass 0.33\\(\\pm\\)0.01M\\(_{\\odot}\\) and radius 0.33\\(\\pm\\)0.02R\\(_{\\odot}\\) member of a hierarchical triple M-dwarf system 22 pc away from the Sun. The planet's orbital period of 16.3 days places it at the inner edge of the Habitable Zone of its host star, the brightest of the inner binary pair. The parameters of the system make TOI-4336 A b an extremely promising target for the detailed atmospheric characterization of a temperate sub-Neptune by transit transmission spectroscopy with JWST.
Precise near-infrared photometry, accounting for precipitable water vapour at SPECULOOS Southern Observatory
The variability induced by precipitable water vapour (PWV) can heavily affect the accuracy of time-series photometric measurements gathered from the ground, especially in the near-infrared. We present here a novel method of modelling and mitigating this variability, as well as open-sourcing the developed tool -- Umbrella. In this study, we evaluate the extent to which the photometry in three common bandpasses (r', i', z'), and SPECULOOS' primary bandpass (I+z'), are photometrically affected by PWV variability. In this selection of bandpasses, the I+z' bandpass was found to be most sensitive to PWV variability, followed by z', i', and r'. The correction was evaluated on global light curves of nearby late M- and L-type stars observed by SPECULOOS' Southern Observatory (SSO) with the I+z' bandpass, using PWV measurements from the LHATPRO and local temperature/humidity sensors. A median reduction in RMS of 1.1% was observed for variability shorter than the expected transit duration for SSO's targets. On timescales longer than the expected transit duration, where long-term variability may be induced, a median reduction in RMS of 53.8% was observed for the same method of correction.
A super-Earth and a mini-Neptune near the 2:1 MMR straddling the radius valley around the nearby mid-M dwarf TOI-2096
Several planetary formation models have been proposed to explain the observed abundance and variety of compositions of super-Earths and mini-Neptunes. In this context, multitransiting systems orbiting low-mass stars whose planets are close to the radius valley are benchmark systems, which help to elucidate which formation model dominates. We report the discovery, validation, and initial characterization of one such system, TOI-2096, composed of a super-Earth and a mini-Neptune hosted by a mid-type M dwarf located 48 pc away. We first characterized the host star by combining different methods. Then, we derived the planetary properties by modeling the photometric data from TESS and ground-based facilities. We used archival data, high-resolution imaging, and statistical validation to support our planetary interpretation. We found that TOI-2096 corresponds to a dwarf star of spectral type M4. It harbors a super-Earth (R\\(\\sim1.2 R_{\\oplus}\\)) and a mini-Neptune (R\\(\\sim1.90 R_{\\oplus}\\)) in likely slightly eccentric orbits with orbital periods of 3.12 d and 6.39 d, respectively. These orbital periods are close to the first-order 2:1 mean-motion resonance (MMR), which may lead to measurable transit timing variations (TTVs). We computed the expected TTVs amplitude for each planet and found that they might be measurable with high-precision photometry delivering mid-transit times with accuracies of \\(\\lesssim\\)2 min. Moreover, measuring the planetary masses via radial velocities (RVs) is also possible. Lastly, we found that these planets are among the best in their class to conduct atmospheric studies using the James Webb Space Telescope (JWST). The properties of this system make it a suitable candidate for further studies, particularly for mass determination using RVs and/or TTVs, decreasing the scarcity of systems that can be used to test planetary formation models around low-mass stars.