Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34
result(s) for
"Raffel, Simon"
Sort by:
Human haematopoietic stem cell lineage commitment is a continuous process
by
Lutz, Christoph
,
Hirche, Christoph
,
Hofmann, Wolf-Karsten
in
45/100
,
45/91
,
631/136/1660/1986
2017
Blood formation is believed to occur through stepwise progression of haematopoietic stem cells (HSCs) following a tree-like hierarchy of oligo-, bi- and unipotent progenitors. However, this model is based on the analysis of predefined flow-sorted cell populations. Here we integrated flow cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map early differentiation of human HSCs towards lineage commitment. During homeostasis, individual HSCs gradually acquire lineage biases along multiple directions without passing through discrete hierarchically organized progenitor populations. Instead, unilineage-restricted cells emerge directly from a ‘continuum of low-primed undifferentiated haematopoietic stem and progenitor cells’ (CLOUD-HSPCs). Distinct gene expression modules operate in a combinatorial manner to control stemness, early lineage priming and the subsequent progression into all major branches of haematopoiesis. These data reveal a continuous landscape of human steady-state haematopoiesis downstream of HSCs and provide a basis for the understanding of haematopoietic malignancies.
Velten
et al.
use single-cell transcriptomics and functional data to map the early lineage commitment of human haematopoietic stem cells as a continuous process of cells passing through transitory states rather than demarcating discrete progenitors.
Journal Article
Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics
2021
Cancer stem cells drive disease progression and relapse in many types of cancer. Despite this, a thorough characterization of these cells remains elusive and with it the ability to eradicate cancer at its source. In acute myeloid leukemia (AML), leukemic stem cells (LSCs) underlie mortality but are difficult to isolate due to their low abundance and high similarity to healthy hematopoietic stem cells (HSCs). Here, we demonstrate that LSCs, HSCs, and pre-leukemic stem cells can be identified and molecularly profiled by combining single-cell transcriptomics with lineage tracing using both nuclear and mitochondrial somatic variants. While mutational status discriminates between healthy and cancerous cells, gene expression distinguishes stem cells and progenitor cell populations. Our approach enables the identification of LSC-specific gene expression programs and the characterization of differentiation blocks induced by leukemic mutations. Taken together, we demonstrate the power of single-cell multi-omic approaches in characterizing cancer stem cells.
Leukaemic stem cells drive acute myeloid leukaemia (AML) progression and relapse but they are incompletely characterized. Here, the authors combine single-cell transcriptomics and clonal tracking using nuclear and mitochondrial somatic variants to distinguish healthy, pre-leukaemic and leukaemic stem cells in AML.
Journal Article
Proteasome inhibition enhances the anti-leukemic efficacy of chimeric antigen receptor (CAR) expressing NK cells against acute myeloid leukemia
by
Unglaub, Julia M.
,
Hao, Yao
,
Besiridou, Eleni
in
Acute myeloid leukemia
,
Animal models
,
Animals
2024
Background
Relapsed and refractory acute myeloid leukemia (AML) carries a dismal prognosis. CAR T cells have shown limited efficacy in AML, partially due to dysfunctional autologous T cells and the extended time for generation of patient specific CAR T cells. Allogeneic NK cell therapy is a promising alternative, but strategies to enhance efficacy and persistence may be necessary. Proteasome inhibitors (PI) induce changes in the surface proteome which may render malignant cells more vulnerable to NK mediated cytotoxicity. Here, we investigated the potential benefit of combining PIs with CAR-expressing allogeneic NK cells against AML.
Methods
We established the IC50 concentrations for Bortezomib and Carfilzomib against several AML cell lines. Surface expression of class-I HLA molecules and stress-associated proteins upon treatment with proteasome inhibitors was determined by multiparameter flow cytometry. Using functional in vitro assays, we explored the therapeutic synergy between pre-treatment with PIs and the anti-leukemic efficacy of NK cells with or without expression of AML-specific CAR constructs against AML cell lines and primary patient samples. Also, we investigated the tolerability and efficacy of a single PI application strategy followed by (CAR-) NK cell infusion in two different murine xenograft models of AML.
Results
AML cell lines and primary AML patient samples were susceptible to Bortezomib and Carfilzomib mediated cytotoxicity. Conditioned resistance to Azacitidine/Venetoclax did not confer primary resistance to PIs. Treating AML cells with PIs reduced the surface expression of class-I HLA molecules on AML cells in a time-and-dose dependent manner. Stress-associated proteins were upregulated on the transcriptional level and on the cell surface. NK cell mediated killing of AML cells was enhanced in a synergistic manner. PI pre-treatment increased effector-target cell conjugate formation and Interferon-γ secretion, resulting in enhanced NK cell activity against AML cell lines and primary samples in vitro. Expression of CD33- and CD70-specific CARs further improved the antileukemic efficacy. In vivo, Bortezomib pre-treatment followed by CAR-NK cell infusion reduced AML growth, leading to prolonged overall survival.
Conclusions
PIs enhance the anti-leukemic efficacy of CAR-expressing allogeneic NK cells against AML in vitro and in vivo, warranting further exploration of this combinatorial treatment within early phase clinical trials.
Journal Article
Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells
2022
Comprehensive proteomics studies of human hematopoietic stem and progenitor cells (HSPC) have revealed that aging of the HSPC compartment is characterized by elevated glycolysis. This is in addition to deregulations found in murine transcriptomics studies, such as an increased differentiation bias towards the myeloid lineage, alterations in DNA repair, and a decrease in lymphoid development. The increase in glycolytic enzyme activity is caused by the expansion of a more glycolytic HSPC subset. We therefore developed a method to isolate HSPC into three distinct categories according to their glucose uptake (GU) levels, namely the GUhigh, GUinter and GUlow subsets. Single-cell transcriptomics studies showed that the GUhigh subset is highly enriched for HSPC with a differentiation bias towards myeloid lineages. Gene set enrichment analysis (GSEA) demonstrated that the gene sets for cell cycle arrest, senescence-associated secretory phenotype, and the anti-apoptosis and P53 pathways are significantly upregulated in the GUhigh population. With this series of studies, we have produced a comprehensive proteomics and single-cell transcriptomics atlas of molecular changes in human HSPC upon aging. Although many of the molecular deregulations are similar to those found in mice, there are significant differences. The most unique finding is the association of elevated central carbon metabolism with senescence. Due to the lack of specific markers, the isolation and collection of senescent cells have yet to be developed, especially for human HSPC. The GUhigh subset from the human HSPC compartment possesses all the transcriptome characteristics of senescence. This property may be exploited to accurately enrich, visualize, and trace senescence development in human bone marrow.
Journal Article
Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells
2020
Inspired by recent proteomic data demonstrating the upregulation of carbon and glycogen metabolism in aging human hematopoietic stem and progenitor cells (HPCs, CD34+ cells), this report addresses whether this is caused by elevated glycolysis of the HPCs on a per cell basis, or by a subpopulation that has become more glycolytic. The average glycogen content in individual CD34+ cells from older subjects (> 50 years) was 3.5 times higher and more heterogeneous compared to younger subjects (< 35 years). Representative glycolytic enzyme activities in HPCs confirmed a significant increase in glycolysis in older subjects. The HPCs from older subjects can be fractionated into three distinct subsets with high, intermediate, and low glucose uptake (GU) capacity, while the subset with a high GU capacity could scarcely be detected in younger subjects. Thus, we conclude that upregulated glycolysis in aging HPCs is caused by the expansion of a more glycolytic HPC subset. Since single-cell RNA analysis has also demonstrated that this subpopulation is linked to myeloid differentiation and increased proliferation, isolation and mechanistic characterization of this subpopulation can be utilized to elucidate specific targets for therapeutic interventions to restore the lineage balance of aging HPCs.
Journal Article
Phosphatidic acid phosphatase LPIN1 in phospholipid metabolism and stemness in hematopoiesis and AML
2025
Targeting metabolism represents a promising approach to eradicate leukemic stem cells (LSCs) that are considered critical drivers of relapse in acute myeloid leukemia (AML). In this study, we demonstrate that the phosphatidic acid phosphatase LPIN1, which regulates the synthesis of diacylglycerol, the key substrate for triacylglycerol, and phospholipid production, is crucial for the function of healthy and leukemic hematopoietic stem and progenitor cells (HSPC and LSC). LPIN1 mRNA was highly expressed in the CD34+ compartment of primary human AML samples. LPIN1 suppression inhibited the proliferation of primary leukemic cells and normal HSPCs in vitro and in xenotransplantation assays. Lipidomics analyses revealed a reduction of phosphatidylcholine (PC) and phosphatidylethanolamine and an upregulation of sphingomyelin upon LPIN1 depletion. Distinct phospholipid composition was associated with genetic AML groups, and targeting PC production by choline kinase inhibitors showed strong anti‐leukemic activity. In summary, our data establish a regulatory role of LPIN1 in HSPC and LSC function and provide novel insights into the role of glycerophospholipid homeostasis in stemness and differentiation.
Journal Article
Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion
2019
Patients with acute myeloid leukaemia (AML) often achieve remission after therapy, but subsequently die of relapse
1
that is driven by chemotherapy-resistant leukaemic stem cells (LSCs)
2
,
3
. LSCs are defined by their capacity to initiate leukaemia in immunocompromised mice
4
. However, this precludes analyses of their interaction with lymphocytes as components of anti-tumour immunity
5
, which LSCs must escape to induce cancer. Here we demonstrate that stemness and immune evasion are closely intertwined in AML. Using xenografts of human AML as well as syngeneic mouse models of leukaemia, we show that ligands of the danger detector NKG2D—a critical mediator of anti-tumour immunity by cytotoxic lymphocytes, such as NK cells
6
–
9
—are generally expressed on bulk AML cells but not on LSCs. AML cells with LSC properties can be isolated by their lack of expression of NKG2D ligands (NKG2DLs) in both CD34-expressing and non-CD34-expressing cases of AML. AML cells that express NKG2DLs are cleared by NK cells, whereas NKG2DL-negative leukaemic cells isolated from the same individual escape cell killing by NK cells. These NKG2DL-negative AML cells show an immature morphology, display molecular and functional stemness characteristics, and can initiate serially re-transplantable leukaemia and survive chemotherapy in patient-derived xenotransplant models. Mechanistically, poly-ADP-ribose polymerase 1 (PARP1) represses expression of NKG2DLs. Genetic or pharmacologic inhibition of PARP1 induces NKG2DLs on the LSC surface but not on healthy or pre-leukaemic cells. Treatment with PARP1 inhibitors, followed by transfer of polyclonal NK cells, suppresses leukaemogenesis in patient-derived xenotransplant models. In summary, our data link the LSC concept to immune escape and provide a strong rationale for targeting therapy-resistant LSCs by PARP1 inhibition, which renders them amenable to control by NK cells in vivo.
Leukaemic stem cells in acute myeloid leukaemia are defined by a lack of expression of NKG2D ligands, which mediates their ability to evade surveillance by NK cells.
Journal Article
Single-cell proteo-genomic reference maps of the hematopoietic system enable the purification and massive profiling of precisely defined cell states
by
Hernández-Malmierca, Pablo
,
Ramasz, Beáta
,
Hofmann, Wolf-Karsten
in
631/1647/2017
,
631/250/232
,
631/532/1542
2021
Single-cell genomics technology has transformed our understanding of complex cellular systems. However, excessive cost and a lack of strategies for the purification of newly identified cell types impede their functional characterization and large-scale profiling. Here, we have generated high-content single-cell proteo-genomic reference maps of human blood and bone marrow that quantitatively link the expression of up to 197 surface markers to cellular identities and biological processes across all main hematopoietic cell types in healthy aging and leukemia. These reference maps enable the automatic design of cost-effective high-throughput cytometry schemes that outperform state-of-the-art approaches, accurately reflect complex topologies of cellular systems and permit the purification of precisely defined cell states. The systematic integration of cytometry and proteo-genomic data enables the functional capacities of precisely mapped cell states to be measured at the single-cell level. Our study serves as an accessible resource and paves the way for a data-driven era in cytometry.
Haas, Velten and colleagues use single-cell multiomics of human blood and bone marrow to generate a reference map allowing the quantitative linking of cytometry and proteo-genomic information.
Journal Article
BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation
2017
The mechanistic basis for the role of the metabolic enzyme BCAA transaminase 1 (BCAT1) in acute myeloid leukaemias.
BCAT1 behind DNA hypermethylation
Overexpression of the metabolic enzyme BCAT1 has been observed in multiple cancer types. Andreas Trumpp, Bernhard Radlwimmer and colleagues have investigated the mechanistic basis of its role in acute myeloid leukaemia. They find that increased BCAT1 activity leads to a decrease in the metabolite αKG, which is known to inhibit members of the αKG-dependent dioxygenase enzyme family, including those that regulate DNA methylation. Accordingly, BCAT1 overexpression results in increased DNA methylation. Interestingly, the same phenotype is caused by mutations in TET and IDH genes that are also found in leukaemia patients. The findings suggest that BCAT1 could be a therapeutic target.
The branched-chain amino acid (BCAA) pathway and high levels of BCAA transaminase 1 (BCAT1) have recently been associated with aggressiveness in several cancer entities
1
,
2
,
3
,
4
,
5
,
6
. However, the mechanistic role of BCAT1 in this process remains largely uncertain. Here, by performing high-resolution proteomic analysis of human acute myeloid leukaemia (AML) stem-cell and non-stem-cell populations, we find the BCAA pathway enriched and BCAT1 protein and transcripts overexpressed in leukaemia stem cells. We show that BCAT1, which transfers α-amino groups from BCAAs to α-ketoglutarate (αKG), is a critical regulator of intracellular αKG homeostasis. Further to its role in the tricarboxylic acid cycle, αKG is an essential cofactor for αKG-dependent dioxygenases such as Egl-9 family hypoxia inducible factor 1 (EGLN1) and the ten-eleven translocation (TET) family of DNA demethylases
7
,
8
,
9
,
10
. Knockdown of BCAT1 in leukaemia cells caused accumulation of αKG, leading to EGLN1-mediated HIF1α protein degradation. This resulted in a growth and survival defect and abrogated leukaemia-initiating potential. By contrast, overexpression of BCAT1 in leukaemia cells decreased intracellular αKG levels and caused DNA hypermethylation through altered TET activity. AML with high levels of BCAT1 (BCAT1
high
) displayed a DNA hypermethylation phenotype similar to cases carrying a mutant isocitrate dehydrogenase (IDH
mut
), in which TET2 is inhibited by the oncometabolite 2-hydroxyglutarate
11
,
12
. High levels of BCAT1 strongly correlate with shorter overall survival in IDH
WT
TET2
WT
, but not IDH
mut
or TET2
mut
AML. Gene sets characteristic for IDH
mut
AML
13
were enriched in samples from patients with an IDH
WT
TET2
WT
BCAT1
high
status. BCAT1
high
AML showed robust enrichment for leukaemia stem-cell signatures
14
,
15
, and paired sample analysis showed a significant increase in BCAT1 levels upon disease relapse. In summary, by limiting intracellular αKG, BCAT1 links BCAA catabolism to HIF1α stability and regulation of the epigenomic landscape, mimicking the effects of IDH mutations. Our results suggest the BCAA–BCAT1–αKG pathway as a therapeutic target to compromise leukaemia stem-cell function in patients with IDH
WT
TET2
WT
AML.
Journal Article
The ribosomal protein S6 kinase alpha-1 (RPS6KA1) induces resistance to venetoclax/azacitidine in acute myeloid leukemia
by
Rohde, Christian
,
Göllner, Stefanie
,
Blank, Maximilian F
in
Acute myeloid leukemia
,
Cell proliferation
,
Cell surface
2023
Venetoclax/azacitidine combination therapy is effective in acute myeloid leukemia (AML) and tolerable for older, multimorbid patients. Despite promising response rates, many patients do not achieve sustained remission or are upfront refractory. Identification of resistance mechanisms and additional therapeutic targets represent unmet clinical needs. By using a genome-wide CRISPR/Cas9 library screen targeting 18,053 protein- coding genes in a human AML cell line, various genes conferring resistance to combined venetoclax/azacitidine treatment were identified. The ribosomal protein S6 kinase A1 (RPS6KA1) was among the most significantly depleted sgRNA-genes in venetoclax/azacitidine- treated AML cells. Addition of the RPS6KA1 inhibitor BI-D1870 to venetoclax/azacitidine decreased proliferation and colony forming potential compared to venetoclax/azacitidine alone. Furthermore, BI-D1870 was able to completely restore the sensitivity of OCI-AML2 cells with acquired resistance to venetoclax/azacitidine. Analysis of cell surface markers revealed that RPS6KA1 inhibition efficiently targeted monocytic blast subclones as a potential source of relapse upon venetoclax/azacitidine treatment. Taken together, our results suggest RPS6KA1 as mediator of resistance towards venetoclax/azacitidine and additional RPS6KA1 inhibition as strategy to prevent or overcome resistance.
Journal Article