Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
51
result(s) for
"Rahman, Ruman"
Sort by:
The Molecular and Phenotypic Basis of the Glioma Invasive Perivascular Niche
2017
Gliomas are devastating brain cancers that have poor prognostic outcomes for their patients. Short overall patient survival is due to a lack of durable, efficacious treatment options. Such therapeutic difficulties exist, in part, due to several glioma survival adaptations and mechanisms, which allow glioma cells to repurpose paracrine signalling pathways and ion channels within discreet microenvironments. These Darwinian adaptations facilitate invasion into brain parenchyma and perivascular space or promote evasion from anti-cancer defence mechanisms. Ultimately, this culminates in glioma repopulation and migration at distances beyond the original tumour site, which is a considerable obstacle for effective treatment. After an era of failed phase II trials targeting individual signalling pathways, coupled to our increasing knowledge of glioma sub-clonal divergence, combinatorial therapeutic approaches which target multiple molecular pathways and mechanisms will be necessary for better treatment outcomes in treating malignant gliomas. Furthermore, next-generation therapy which focuses on infiltrative tumour phenotypes and disruption of the vascular and perivascular microenvironments harbouring residual disease cells offers optimism for the localised control of malignant gliomas.
Journal Article
Transcription Profile and Pathway Analysis of the Endocannabinoid Receptor Inverse Agonist AM630 in the Core and Infiltrative Boundary of Human Glioblastoma Cells
by
Williams, Gareth
,
Molina-Holgado, Francisco
,
Chambers, David
in
Agonists
,
Brain cancer
,
CB2 cannabinoid receptor
2022
Background: We have previously reported that the endocannabinoid receptor inverse agonist AM630 is a potent inhibitor of isocitrade dehydrogenase-1 wild-type glioblastoma (GBM) core tumour cell proliferation. To uncover the mechanism behind the anti-tumour effects we have performed a transcriptional analysis of AM630 activity both in the tumour core cells (U87) and the invasive margin cells (GIN-8), the latter representing a better proxy of post-surgical residual disease. Results: The core and invasive margin cells exhibited markedly different gene expression profiles and only the core cells had high expression of a potential AM630 target, the CB1 receptor. Both cell types had moderate expression of the HTR2B serotonin receptor, a reported AM630 target. We found that the AM630 driven transcriptional response was substantially higher in the central cells than in the invasive margin cells, with the former driving the up regulation of immune response and the down regulation of cell cycle and metastatic pathways and correlating with transcriptional responses driven by established anti-neoplastics as well as serotonin receptor antagonists. Conclusion: Our results highlight the different gene sets involved in the core and invasive margin cell lines derived from GBM and an associated marked difference in responsiveness to AM630. Our findings identify AM630 as an anti-neoplastic drug in the context of the core cells, showing a high correlation with the activity of known antiproliferative drugs. However, we reveal a key set of similarities between the two cell lines that may inform therapeutic intervention.
Journal Article
Regional profiling reveals a distinct glioblastoma infiltrative margin proteome
2025
Isocitrate dehydrogenase wild-type glioblastoma, a malignant brain tumour of glial origin, confers a poor prognosis with a median survival of 12 to 16 months from diagnosis. Glioblastomas are aggressive tumours that rapidly proliferate and diffusely infiltrate surrounding brain tissue. Current multimodal standard treatment is typically ineffective and despite gross total surgical resection, tumours recur with more aggressive sub-clonal populations of malignant cells. A defining characteristic of glioblastoma is its highly heterogeneous nature and acquirement of somatic mutations advantageous to tumour growth and suppression of apoptotic pathways. Pathogenesis of malignant brain tumours as well as its mode of transformation to a more aggressive subtype is still largely unknown. Although genomic studies have elucidated a plethora of genetic markers associated with glioblastoma subtypes, only a few have been utilised in a clinical setting. One of the emerging approaches to studying glioblastomas is by investigating how an active proteome contributes to its aggressive nature. Furthermore, through activation of specific pathways via post-translational modifications of proteins such as phosphorylation, glioblastomas create an intricate network of signalling pathways which favour tumour growth and proliferation. Here, we investigated the feasibility of diverse methodological approaches to describe abnormal protein signalling across distinct intra-tumour regions of primary glioblastoma tissue, including proliferative core, peripheral rim, and invasive margin. Whilst we observe a broadly comparable proteome relative to the human non-diseased brain, we identify cytoplasmic proteins α-trypsin, actin, apolipoprotein A1 and transthyretin which may putatively be associated with the GBM infiltrative tumour margin.
Journal Article
Metabolic modeling-based drug repurposing in Glioblastoma
2022
The manifestation of intra- and inter-tumor heterogeneity hinders the development of ubiquitous cancer treatments, thus requiring a tailored therapy for each cancer type. Specifically, the reprogramming of cellular metabolism has been identified as a source of potential drug targets. Drug discovery is a long and resource-demanding process aiming at identifying and testing compounds early in the drug development pipeline. While drug repurposing efforts (i.e., inspecting readily available approved drugs) can be supported by a mechanistic rationale, strategies to further reduce and prioritize the list of potential candidates are still needed to facilitate feasible studies. Although a variety of ‘
omics
’ data are widely gathered, a standard integration method with modeling approaches is lacking. For instance, flux balance analysis is a metabolic modeling technique that mainly relies on the stoichiometry of the metabolic network. However, exploring the network’s topology typically neglects biologically relevant information. Here we introduce
Transcriptomics-Informed Stoichiometric Modelling And Network analysis
(TISMAN) in a recombinant innovation manner, allowing identification and validation of genes as targets for drug repurposing using glioblastoma as an exemplar.
Journal Article
Thioredoxin System Protein Expression Is Associated with Poor Clinical Outcome in Adult and Paediatric Gliomas and Medulloblastomas
by
Smith, Stuart
,
Storr, Sarah J
,
Grundy, Richard
in
Brain cancer
,
Brain tumors
,
Clinical outcomes
2020
The thioredoxin (Trx) system is an important enzyme family that regulates cellular redox homeostasis. Protein expression of Trx system family members has been assessed in various cancers and linked to various clinicopathological variables, disease progression, treatment response and survival outcomes but information is lacking in brain tumours. Expression of the system was therefore examined, by immunohistochemistry in different brain tumour types, adult and paediatric cases, to determine if expression was of importance to clinical outcome. Trx system proteins were expressed, to variable levels, across all brain tumour types with significant variations in expression between different tumour types/grades/regions. High Trx reductase (TrxR) expression was linked to worse prognosis across all cohorts. High cytoplasmic TrxR expression was significantly associated with adverse overall survival (OS) in adult glioblastoma (P = 0.027) and paediatric low-grade glioma (LGG) patients (P = 0.012). High expression of nuclear TrxR, cytoplasmic and nuclear Trx and Trx-interacting protein (TxNIP) was associated with improved OS in paediatric LGGs (P = 0.031, P < 0.001, P = 0.044 and P = 0.018, respectively). For patients with high-grade gliomas, both high cytoplasmic TrxR and Trx expression were associated with poor OS (P = 0.002 and P = 0.007, respectively). In medulloblastoma, high expression of cytoplasmic TrxR and Trx and nuclear Trx was associated with worse prognosis (P = 0.013, P = 0.033 and P = 0.007, respectively); with cytoplasmic TrxR and nuclear Trx remaining so in multivariate analysis (P = 0.009 and P = 0.013, respectively). The consistent finding that high levels of cytoplasmic TrxR are associated with a worse prognosis across all cohorts suggests that TrxR is an important therapeutic target in brain cancers.
Journal Article
Bipolar electrochemical growth of conductive microwires for cancer spheroid integration: a step forward in conductive biological circuitry
by
Robinson, Andie J.
,
Rawson, Frankie J.
,
Hague, Richard J. M.
in
639/166/985
,
639/638/161/886
,
Biology
2024
The field of bioelectronics is developing exponentially. There is now a drive to interface electronics with biology for the development of new technologies to improve our understanding of electrical forces in biology. This builds on our recently published work in which we show wireless electrochemistry could be used to grow bioelectronic functional circuitry in 2D cell layers. To date our ability to merge electronics with in situ with biology is 3D limited. In this study, we aimed to further develop the wireless electrochemical approach for the self-assembly of microwires in situ with custom-designed and fabricated 3D cancer spheroids. Unlike traditional electrochemical methods that rely on direct electrical connections to induce currents, our technique utilises bipolar electrodes that operate independently of physical wired connections. These electrodes enable redox reactions through the application of an external electric field. Specifically, feeder electrodes connected to a power supply generate an electric field, while the bipolar electrodes, not physically connected to the feeder electrodes, facilitate the reduction of silver ions from the solution. This process occurs upon applying a voltage across the feeder electrodes, resulting in the formation of self-assembled microwires between the cancer spheroids.Thereby, creating interlinked bioelectronic circuitry with cancer spheroids. We demonstrate that a direct current was needed to stimulate the growth of conductive microwires in the presence of cell spheroids. Microwire growth was successful when using 50 V (0.5 kV/cm) of DC applied to a single spheroid of approximately 800 µm in diameter but could not be achieved with alternating currents. This represents the first proof of the concept of using wireless electrochemistry to grow conductive structures with 3D mammalian cell spheroids.
Journal Article
Spatially resolved transcriptomic profiles reveal unique defining molecular features of infiltrative 5ALA-metabolizing cells associated with glioblastoma recurrence
2023
Background
Spatiotemporal heterogeneity originating from genomic and transcriptional variation was found to contribute to subtype switching in isocitrate dehydrogenase-1 wild-type glioblastoma (GBM) prior to and upon recurrence. Fluorescence-guided neurosurgical resection utilizing 5-aminolevulinic acid (5ALA) enables intraoperative visualization of infiltrative tumors outside the magnetic resonance imaging contrast-enhanced regions. The cell population and functional status of tumor responsible for enhancing 5ALA-metabolism to fluorescence-active PpIX remain elusive. The close spatial proximity of 5ALA-metabolizing (5ALA +) cells to residual disease remaining post-surgery renders 5ALA + biology an early a priori proxy of GBM recurrence, which is poorly understood.
Methods
We performed spatially resolved bulk RNA profiling (SPRP) analysis of unsorted Core, Rim, Invasive margin tissue, and FACS-isolated 5ALA + /5ALA − cells from the invasive margin across
IDH
-wt GBM patients (
N
= 10) coupled with histological, radiographic, and two-photon excitation fluorescence microscopic analyses. Deconvolution of SPRP followed by functional analyses was performed using CIBERSORTx and UCell enrichment algorithms, respectively. We further investigated the spatial architecture of 5ALA + enriched regions by analyzing spatial transcriptomics from an independent
IDH
-wt GBM cohort (
N
= 16). Lastly, we performed survival analysis using Cox Proportinal-Hazards model on large GBM cohorts.
Results
SPRP analysis integrated with single-cell and spatial transcriptomics uncovered that the GBM molecular subtype heterogeneity is likely to manifest regionally in a cell-type-specific manner. Infiltrative 5ALA + cell population(s) harboring transcriptionally concordant GBM and myeloid cells with mesenchymal subtype, -active wound response, and glycolytic metabolic signature, was shown to reside within the invasive margin spatially distinct from the tumor core. The spatial co-localization of the infiltrating MES GBM and myeloid cells within the 5ALA + region indicates PpIX fluorescence can effectively be utilized to resect the immune reactive zone beyond the tumor core. Finally, 5ALA + gene signatures were associated with poor survival and recurrence in GBM, signifying that the transition from primary to recurrent GBM is not discrete but rather a continuum whereby primary infiltrative 5ALA + remnant tumor cells more closely resemble the eventual recurrent GBM.
Conclusions
Elucidating the unique molecular and cellular features of the 5ALA + population within tumor invasive margin opens up unique possibilities to develop more effective treatments to delay or block GBM recurrence, and warrants commencement of such treatments as early as possible post-surgical resection of the primary neoplasm.
Journal Article
Low-Density Lipoprotein Pathway Is a Ubiquitous Metabolic Vulnerability in High Grade Glioma Amenable for Nanotherapeutic Delivery
by
Needham, David
,
Adekeye, Adenike O.
,
Rahman, Ruman
in
Antibodies
,
Brain cancer
,
Brain research
2023
Metabolic reprogramming, through increased uptake of cholesterol in the form of low-density lipoproteins (LDL), is one way by which cancer cells, including high grade gliomas (HGG), maintain their rapid growth. In this study, we determined LDL receptor (LDLR) expression in HGGs using immunohistochemistry on tissue microarrays from intra- and inter tumour regions of 36 adult and 133 paediatric patients to confirm LDLR as a therapeutic target. Additionally, we analysed expression levels in three representative cell line models to confirm their future utility to test LDLR-targeted nanoparticle uptake, retention, and cytotoxicity. Our data show widespread LDLR expression in adult and paediatric cohorts, but with significant intra-tumour variation observed between the core and either rim or invasive regions of adult HGG. Expression was independent of paediatric tumour grade or identified clinicopathological factors. LDLR-expressing tumour cells localized preferentially within perivascular niches, also with significant adult intra-tumour variation. We demonstrated variable levels of LDLR expression in all cell lines, confirming their suitability as models to test LDLR-targeted nanotherapy delivery. Overall, our study reveals the LDLR pathway as a ubiquitous metabolic vulnerability in high grade gliomas across all ages, amenable to future consideration of LDL-mediated nanoparticle/drug delivery to potentially circumvent tumour heterogeneity.
Journal Article
REST-dependent glioma progression occurs independently of the repression of the long non-coding RNA HAR1A
by
Mongiardini, Vera
,
Győrffy, Balázs
,
Heath, Christopher J.
in
Analysis
,
Antibiotics
,
Apoptosis
2024
The long non-coding RNA (lncRNA), HAR1A is emerging as a putative tumour suppressor. In non-neoplastic brain cells, REST suppresses HAR1A expression. In gliomas REST acts as an oncogene and is a potential therapeutic target. It is therefore conceivable that REST promotes glioma progression by down-regulating HAR1A . To test this hypothesis, glioma clinical databases were analysed to study: (I) HAR1A / REST correlation; (II) HAR1A and REST prognostic role; (III) molecular pathways associated with these genes. HAR1A expression and subcellular localization were studied in glioblastoma and paediatric glioma cells. REST function was also studied in these cells, by observing the effects of gene silencing on: (I) HAR1A expression; (II) cancer cell proliferation, apoptosis, migration; (III) expression of neural differentiation genes. The same phenotypes (and cell morphology) were studied in HAR1A overexpressing cells. Our results show that REST and HAR1A are negatively correlated in gliomas. Higher REST expression predicts worse prognosis in low-grade gliomas (the opposite is true for HAR1A ). REST -silencing induces HAR1A upregulation. HAR1A is primarily detected in the nucleus. REST -silencing dramatically reduces cell proliferation and induces apoptosis, but HAR1A overexpression has no major effect on investigated cell phenotypes. We also show that REST regulates the expression of neural differentiation genes and that its oncogenic function is primarily HAR1A -independent.
Journal Article
Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms
2012
In most sexually reproducing animals, replication and maintenance of telomeres occurs in the germ line and during early development in embryogenesis through the use of telomerase. Somatic cells generally do not maintain telomere sequences, and these cells become senescent in adults as telomeres shorten to a critical length. Some animals reproduce clonally and must therefore require adult somatic mechanisms for maintaining their chromosome ends. Here we study the telomere biology of planarian flatworms with apparently limitless regenerative capacity fueled by a population of highly proliferative adult stem cells. We show that somatic telomere maintenance is different in asexual and sexual animals. Asexual animals maintain telomere length somatically during reproduction by fission or when regeneration is induced by amputation, whereas sexual animals only achieve telomere elongation through sexual reproduction. We demonstrate that this difference is reflected in the expression and alternate splicing of the protein subunit of the telomerase enzyme. Asexual adult planarian stem cells appear to maintain telomere length over evolutionary timescales without passage through a germ-line stage. The adaptations we observe demonstrate indefinite somatic telomerase activity in proliferating stem cells during regeneration or reproduction by fission, and establish planarians as a pertinent model for studying telomere structure, function, and maintenance.
Journal Article