Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
25
result(s) for
"Ralston, Corie Y."
Sort by:
Local and global structural drivers for the photoactivation of the orange carotenoid protein
by
Petzold, Christopher J.
,
Lee, Kelly K.
,
Kerfeld, Cheryl A.
in
60 APPLIED LIFE SCIENCES
,
Bacteria
,
Bacterial Proteins - chemistry
2015
Photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined to only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.
Journal Article
Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells
by
Kerfeld, Cheryl A.
,
Sommer, Manuel
,
Sutter, Markus
in
bacterial microcompartment
,
Bacterial Proteins - genetics
,
Bacterial Proteins - metabolism
2019
Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of β-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by \"capping\" facet-embedded hexamers with a second hexamer. Because β-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.
Journal Article
Chelation and stabilization of berkelium in oxidation state +IV
by
Sturzbecher-Hoehne, Manuel
,
Rupert, Peter B.
,
de Jong, Wibe A.
in
631/45/535/1266
,
639/638/11/296
,
639/638/263/49
2017
Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +
III
and +
IV
oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(
IV
) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(
IV
) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(
III
)–ligand–protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.
Berkelium is the only transplutonium element predicted to be able to exhibit both +
III
and +
IV
oxidation states in solution. Bk(
IV
) has now been stabilized through chelation with a siderophore derivative. The resulting neutral coordination compound was characterized and compared with the negatively charged species obtained by chelation of neighbouring trivalent actinides.
Journal Article
Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods
2022
Commercial monoclonal antibodies are growing and important components of modern therapies against a multitude of human diseases. Well-known high-resolution structural methods such as protein crystallography are often used to characterize antibody structures and to determine paratope and/or epitope binding regions in order to refine antibody design. However, many standard structural techniques require specialized sample preparation that may perturb antibody structure or require high concentrations or other conditions that are far from the conditions conducive to the accurate determination of antigen binding or kinetics. We describe here in this minireview the relatively new method of hydroxyl radical protein footprinting, a solution-state method that can provide structural and kinetic information on antibodies or antibody–antigen interactions useful for therapeutic antibody design. We provide a brief history of hydroxyl radical footprinting, examples of current implementations, and recent advances in throughput and accessibility.
Journal Article
Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides
by
Sturzbecher-Hoehne, Manuel
,
Allred, Benjamin E.
,
Rupert, Peter B.
in
actinide transport
,
Actinides
,
Actinoid Series Elements - chemistry
2015
Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking offelements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.
Journal Article
Long-term, non-invasive FTIR detection of low-dose ionizing radiation exposure
2024
Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the
stratum corneum
of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.
Journal Article
Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy
by
McAndrew, Ryan P.
,
Adams, Paul D.
,
Pereira, Jose H.
in
60 APPLIED LIFE SCIENCES
,
631/337/470/1981
,
631/337/470/2284
2017
The human chaperonin TRiC consists of eight non-identical subunits, and its protein-folding activity is critical for cellular health. Misfolded proteins are associated with many human diseases, such as amyloid diseases, cancer, and neuropathies, making TRiC a potential therapeutic target. A detailed structural understanding of its ATP-dependent folding mechanism and substrate recognition is therefore of great importance. Of particular health-related interest is the mutation Histidine 147 to Arginine (H147R) in human TRiC subunit 5 (CCT5), which has been associated with hereditary sensory neuropathy. In this paper, we describe the crystal structures of CCT5 and the CCT5-H147R mutant, which provide important structural information for this vital protein-folding machine in humans. This first X-ray crystallographic study of a single human CCT subunit in the context of a hexadecameric complex can be expanded in the future to the other 7 subunits that form the TRiC complex.
Journal Article
Residue-Specific Epitope Mapping of the PD-1/Nivolumab Interaction Using X-ray Footprinting Mass Spectrometry
by
Kristensen, Line G.
,
Gupta, Sayan
,
Petzold, Christopher J.
in
Accessibility
,
Asparagine
,
Cell receptors
2024
X-ray footprinting coupled with mass spectrometry (XFMS) presents a novel approach in structural biology, offering insights into protein conformation and dynamics in the solution state. The interaction of the cancer-immunotherapy monoclonal antibody nivolumab with its antigen target PD-1 was used to showcase the utility of XFMS against the previously published crystal structure of the complex. Changes in side-chain solvent accessibility, as determined by the oxidative footprint of free PD-1 versus PD-1 bound to nivolumab, agree with the binding interface side-chain interactions reported from the crystal structure of the complex. The N-linked glycosylation sites of PD-1 were confirmed through an LC-MS/MS-based deglycosylation analysis of asparagine deamidation. In addition, subtle changes in side-chain solvent accessibility were observed in the C′D loop region of PD-1 upon complex formation with nivolumab.
Journal Article
An automated liquid jet for fluorescence dosimetry and microsecond radiolytic labeling of proteins
2022
X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method’s overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling.
A high-speed liquid jet delivery system improves the X-ray footprinting and mass spectrometry method to label proteins for structural studies.
Journal Article
Mechanism of nucleotide sensing in group II chaperonins
by
McAndrew, Ryan P
,
Lopez, Tom
,
Knee, Kelly M
in
Adenine Nucleotides - metabolism
,
Adenosine diphosphate
,
Adenosine Triphosphatases - metabolism
2012
Group II chaperonins mediate protein folding in an ATP‐dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi‐subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide‐binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from
Methanococcus maripaludis
in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys‐161, which is extremely conserved among group II chaperonins, forms interactions with the γ‐phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ‐phosphate interaction with Lys‐161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160–169. We propose that Lys‐161 functions as an ATP sensor and that 160–169 constitutes a nucleotide‐sensing loop (NSL) that monitors the presence of the γ‐phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.
Group II chaperonins mediate ATP‐dependent protein folding in eukaryotes and archaea. A series of crystal structures and functional studies of an archaeal chaperonin identify a nucleotide‐sensing loop that is involved in the timing of the protein folding cycle.
Journal Article