Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Ramaekers, Vincent T"
Sort by:
Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10
We describe members of 4 kindreds with a previously unrecognized syndrome characterized by seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (hypokalemia, metabolic alkalosis, and hypomagnesemia). By analysis of linkage we localize the putative causative gene to a 2.5-Mb segment of chromosome 1q23.2-23.3. Direct DNA sequencing of KCNJ10, which encodes an inwardly rectifying K⁺ channel, identifies previously unidentified missense or nonsense mutations on both alleles in all affected subjects. These mutations alter highly conserved amino acids and are absent among control chromosomes. Many of these mutations have been shown to cause loss of function in related K⁺ channels. These findings demonstrate that loss-of-function mutations in KCNJ10 cause this syndrome, which we name SeSAME. KCNJ10 is expressed in glia in the brain and spinal cord, where it is believed to take up K⁺ released by neuronal repolarization, in cochlea, where it is involved in the generation of endolymph, and on the basolateral membrane in the distal nephron. We propose that KCNJ10 is required in the kidney for normal salt reabsorption in the distal convoluted tubule because of the need for K⁺ recycling across the basolateral membrane to enable normal activity of the Na⁺-K⁺-ATPase; loss of this function accounts for the observed electrolyte defects. Mice deficient for KCNJ10 show a related phenotype with seizures, ataxia, and hearing loss, further supporting KCNJ10's role in this syndrome. These findings define a unique human syndrome, and establish the essential role of basolateral K⁺ channels in renal electrolyte homeostasis.
Folate Receptor Alpha Autoantibodies in Autism Spectrum Disorders: Diagnosis, Treatment and Prevention
Folate deficiency and folate receptor autoimmune disorder are major contributors to infertility, pregnancy related complications and abnormal fetal development including structural and functional abnormalities of the brain. Food fortification and prenatal folic acid supplementation has reduced the incidence of neural tube defect (NTD) pregnancies but is unlikely to prevent pregnancy-related complications in the presence of folate receptor autoantibodies (FRAb). In pregnancy, these autoantibodies can block folate transport to the fetus and in young children, folate transport to the brain. These antibodies are prevalent in neural tube defect pregnancies and in developmental disorders such as cerebral folate deficiency (CFD) syndrome and autism spectrum disorder (ASD). In the latter conditions, folinic acid treatment has shown clinical improvement in some of the core ASD deficits. Early testing for folate receptor autoantibodies and intervention is likely to result in a positive outcome. This review discusses the first identification of FRAb in women with a history of neural tube defect pregnancy and FRAb’s association with sub-fertility and preterm birth. Autoantibodies against folate receptor alpha (FRα) are present in about 70% of the children with a diagnosis of ASD, and a significant number of these children respond to oral folinic acid with overall improvements in speech, language and social interaction. The diagnosis of folate receptor autoimmune disorder by measuring autoantibodies against FRα in the serum provides a marker with the potential for treatment and perhaps preventing the pathologic consequences of folate receptor autoimmune disorder.
Autoantibodies to Folate Receptors in the Cerebral Folate Deficiency Syndrome
Childhood cerebral folate deficiency is a disabling neurologic disorder in which folate is reduced in the cerebrospinal fluid but not in the blood. The usual signs of folate deficiency are therefore absent. This study showed that children with cerebral folate deficiency produce autoantibodies that block the binding of folate to the folate receptor. Very high doses of folate resulted in clinical improvement in some children. Children with cerebral folate deficiency produce autoantibodies that block the binding of folate to the folate receptor. This report widens the scope of knowledge about receptor-binding autoantibodies and introduces provocative ideas about certain brain disorders of childhood. Cerebral folate deficiency can be defined as any neuropsychiatric condition associated with low levels of 5-methyltetrahydrofolate (5MTHF), the active folate metabolite in the cerebrospinal fluid, in association with normal folate metabolism outside the central nervous system, as reflected by normal hematologic values, normal serum homocysteine levels, and normal levels of folate in serum and erythrocytes. Infantile-onset cerebral folate deficiency is a neurologic syndrome that develops four to six months after birth. Its major manifestations are marked irritability, slow head growth, psychomotor retardation, cerebellar ataxia, pyramidal tract signs in the legs, dyskinesias (e.g., choreoathetosis and ballismus), and in some cases, seizures. . . .
KDM6B Variants May Contribute to the Pathophysiology of Human Cerebral Folate Deficiency
(1) Background: The genetic etiology of most patients with cerebral folate deficiency (CFD) remains poorly understood. KDM6B variants were reported to cause neurodevelopmental diseases; however, the association between KDM6B and CFD is unknown; (2) Methods: Exome sequencing (ES) was performed on 48 isolated CFD cases. The effect of KDM6B variants on KDM6B protein expression, Histone H3 lysine 27 epigenetic modification and FOLR1 expression were examined in vitro. For each patient, serum FOLR1 autoantibodies were measured; (3) Results: Six KDM6B variants were identified in five CFD patients, which accounts for 10% of our CFD cohort cases. Functional experiments indicated that these KDM6B variants decreased the amount of KDM6B protein, which resulted in elevated H3K27me2, lower H3K27Ac and decreased FOLR1 protein concentrations. In addition, FOLR1 autoantibodies have been identified in serum; (4) Conclusion: Our study raises the possibility that KDM6B may be a novel CFD candidate gene in humans. Variants in KDM6B could downregulate FOLR1 gene expression, and might also predispose carriers to the development of FOLR1 autoantibodies.
A milk‐free diet downregulates folate receptor autoimmunity in cerebral folate deficiency syndrome
In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk‐free diet. Intervention with a milkfree diet in 12 children (nine males, three females; mean age 6y [SD 4y 11mo], range 1‐19y), decreased autoantibody titer significantly from 2.08pmol of FR blocked per ml of serum (SD 2.1; range 0.24‐8.35) to 0.35pmol (SD 0.49; range 0‐1.32; p=0.012) over 3 to 13 months, whereas FR autoantibody titer increased significantly to 6.53 (SD 6.08; range 0.54‐14.07; p=0.013) in nine children who were reexposed to milk for 6 to 14 weeks. In 12 children on a normal diet (eight males, four females; mean age 5y 5mo [SD 4y 1mo], range 1y 6mo‐16y 4mo), the antibody titer increased significantly from 0.84pmol of FR blocked per ml (SD 0.39; range 0.24‐1.44) to 3.04pmol (SD 1.42; range 0.84‐6.01; p=0.001) over 10 to 24 months. Decreasing the autoantibody titer with a milk‐free diet in conjunction with folinic acid therapy may be advocated for these patients.
Oxidative Stress, Folate Receptor Autoimmunity, and CSF Findings in Severe Infantile Autism
Background. Biomarkers such as oxidative stress, folate receptor alpha (FRα) autoimmunity, and abnormal brain serotonin turnover are common in autism. Methods. Oxidative stress biomarkers with pro- and antioxidants were measured in the severe form of infantile autism (n = 38) and controls (n = 24). Children and parents had repeated testing for serum FR autoantibodies, spinal fluid dopamine and serotonin metabolites, pterins, and N5-methyltetrahydrofolate (MTHF). Statistical analysis assessed correlations between variables. Genetic analysis included the SLC6A4 and SLC29A4 genes encoding synaptic serotonin reuptake proteins. Results. Compared to controls, the autism group showed a significant increase in oxidative DNA damage in lymphocytes, plasma ceruloplasmin and copper levels with a high copper/zinc ratio, thiol proteins, and superoxide dismutase (SOD) activity. Vitamin C levels were significantly diminished. In most autistic patients, the vitamin A (64%) and D (70%) levels were low. Serum FR autoantibodies fluctuating over 5–7 week periods presented in 68% of all autistic children, 41% of parents vs. 3.3% of control children and their parents. CSF showed lowered serotonin 5-hydroxyindole acetic acid (5HIAA) metabolites in 13 (34%), a low 5HIAA to HVA (dopamine metabolite) ratio in 5 (13%), low 5HIAA and MTHF in 2 (5%), and low MTHF in 8 patients (21%). A known SLC6A4 mutation was identified only in 1 autistic child with low CSF 5HIAA and a novel SLC29A4 mutation was identified in identical twins. Low CSF MTHF levels among only 26% of subjects can be explained by the fluctuating FR antibody titers. Two or more aberrant pro-oxidant and/or antioxidant factors predisposed to low CSF serotonin metabolites. Three autistic children having low CSF 5HIAA and elevated oxidative stress received antioxidative supplements followed by CSF 5HIAA normalisation. Conclusion. In autism, we found diverse combinations for FR autoimmunity and/or oxidative stress, both amenable to treatment. Parental and postnatal FR autoantibodies tend to block folate passage to the brain affecting folate-dependent pathways restored by folinic acid treatment, while an abnormal redox status tends to induce reduced serotonin turnover, corrected by antioxidant therapy. Trial Registration. The case-controlled study was approved in 2008 by the IRB at Liège University (Belgian Number: B70720083916). Lay Summary. Children with severe infantile autism frequently have serum folate receptor autoantibodies that block the transport of the essential vitamin folate across the blood-brain barrier to the brain. Parents are often asymptomatic carriers of these serum folate receptor autoantibodies, which in mothers can block folate passage across the placenta to their unborn child. This folate deficiency during the child’s intrauterine development may predispose to neural tube defects and autism. Oxidative stress represents a condition with the presence of elevated toxic oxygen derivatives attributed to an imbalance between the formation and protection against these toxic reactive oxygen derivatives. Oxidative stress was found to be present in autistic children where these reactive oxygen derivatives can cause damage to DNA, which changes DNA function and regulation of gene expression. In addition, excessive amounts of these toxic oxygen derivatives are likely to damage the enzyme producing the neuromessenger serotonin in the brain, diminished in about 1/3 of the autistic children. Testing children with autism for oxidative stress and its origin, as well as testing for serum folate receptor autoantibodies, could open new approaches towards more effective treatments.
X-linked dominant Charcot-Marie-Tooth disease: nerve biopsies allow morphological evaluation and detection of connexin32 mutations (Arg15Trp, Arg22Gln)
X-linked Charcot-Marie-Tooth neuropathy (CMTX) is caused by mutations in the connexin32 gene on Xq13. Because of overlapping morphological and clinical data, CMTX patients often meet the criteria of autosomal-dominant CMT2, the neuronal type of CMT. Hence, it might be useful to analyse the connexin32 gene in suspected CMT2 patients when there is no male-to-male transmission. We selected a cohort of 30 patients who were considered having CMT2 on the basis of previous clinical and histopathological evaluation. DNA was extracted from paraffin-embedded sural nerve biopsy samples and screened for connexin32 mutations to verify the possible diagnosis of CMTX. In 2 patients mutations were found corresponding to amino acid substitutions of arginine for tryptophan in codon 15 and arginine for glutamine in codon 22 of connexin32. This study illustrates that archival material allows genetic classification of suspected CMT cases. Furthermore, there is additional proof that connexin32 mutations represent the underlying genetic defect in some cases of predominantly neuronal CMT.
Cerebral Folate Deficiency Syndrome
To the Editor: Ramaekers et al. (May 12 issue) 1 report 28 patients with the cerebral folate deficiency syndrome characterized by decreased levels of 5-methyltetrahydrofolate (5MTHF) in the cerebrospinal fluid caused by autoantibodies' blocking of folate transport into the brain. The patients benefited from folinic acid supplementation. The clinical features of this syndrome fit with other neurodegenerative disorders. According to previous papers by the authors, the latter disorders can be associated with cerebral folate deficiency as a secondary phenomenon. 2 – 4 Patients with secondary cerebral folate deficiency (e.g., the Rett syndrome) potentially benefit from folinic acid supplementation. 2 – 4 The authors do not . . .
Cerebral Folate Deficiency Syndrome/THE AUTHORS REPLY
The clinical features of this syndrome fit with other neurodegenerative disorders. According to previous papers by the authors, the latter disorders can be associated with cerebral folate deficiency as a secondary phenomenon.2-4 Patients with secondary cerebral folate deficiency (e.g., the Rett syndrome) potentially benefit from folinic acid supplementation.2-4 The authors do not report the presence or absence of folate-receptor autoantibodies in secondary cerebral folate deficiency.
Closing the gap while standing still: clinimetric properties of a low-cost balance platform and a user-friendly app for posturography
The Wii Balance Board (WBB) is used as a rehabilitation tool for balance or strength interventions and posturography in balance tasks. Nonetheless, implementation of posturography using the WBB in a clinical setting is hampered by required technical skills for signal processing to obtain meaningful balance measures. Therefore, this study aims to evaluate the concurrent validity and test-retest reliability of a WBB to measure center of pressure (COP) parameters and to provide an easy-to-use web application to improve implementation of posturography in clinical practice. A cross-sectional study was carried out including 30 healthy adults who performed repeated balance tasks including single and double leg standing still with eyes open or eyes closed. A WBB on top of a laboratory-grade force plate synchronously measured COP. Parameters based on COP displacement were calculated, including standard deviation of displacement, velocity, pathlength and 95% predicted ellipse area. The concurrent validity of the WBB to measure COP in quiet standing still tasks was excellent for all parameters (Intraclass Correlation Coefficient (ICC) > 0.900,  < 0.001), apart from medio-lateral velocity (ICC = 0.571,  = 0.090 to ICC = 0.711,  = 0.057). For the single leg balance tasks, across the two measurements, all WBB COP derived parameters showed excellent correlations with COP parameters derived from a laboratory-grade force plate (ICC > 0.95,  < 0.001). Test-retest reliability of the WBB was poor (ICC below 0.5) to occasionally good (ICC between 0.75 to 0.90) for the COP parameters from quiet standing balance tasks. Comparable reliability was found for the repeated measurements of single leg standing still. Power spectra analysis of both force plates revealed larger measurement error by the WBB in medio-lateral direction in tasks requiring minimal postural adjustments. The WBB revealed excellent concurrent validity with a laboratory-grade force plate for balance tasks on a single leg or two legs for most COP parameters. The reliability was poor to moderate for most tasks, however comparable to the findings from the laboratory grade force plate. An open-source web application, employing R Shiny, was created to provide a tool to analyse COP parameters. Hereby, it was demonstrated that open-source scientific tools may help researchers to bridge the gap between scientific findings and clinical use of posturography.