Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
145 result(s) for "Ramasco, Jose J."
Sort by:
Uncovering the socioeconomic facets of human mobility
Given the rapid recent trend of urbanization, a better understanding of how urban infrastructure mediates socioeconomic interactions and economic systems is of vital importance. While the accessibility of location-enabled devices as well as large-scale datasets of human activities, has fueled significant advances in our understanding, there is little agreement on the linkage between socioeconomic status and its influence on movement patterns, in particular, the role of inequality. Here, we analyze a heavily aggregated and anonymized summary of global mobility and investigate the relationships between socioeconomic status and mobility across a hundred cities in the US and Brazil. We uncover two types of relationships, finding either a clear connection or little-to-no interdependencies. The former tend to be characterized by low levels of public transportation usage, inequitable access to basic amenities and services, and segregated clusters of communities in terms of income, with the latter class showing the opposite trends. Our findings provide useful lessons in designing urban habitats that serve the larger interests of all inhabitants irrespective of their economic status.
Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic
After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related controls during the early stage of the outbreak in an attempt to contain or slow down its international spread. These controls along with self-imposed travel limitations contributed to a decline of about 40% in international air traffic to/from Mexico following the international alert. However, no containment was achieved by such restrictions and the virus was able to reach pandemic proportions in a short time. When gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on epidemic models that integrate the wide range of features characterizing human mobility and the many options available to public health organizations for responding to a pandemic. Here we present a comprehensive computational and theoretical study of the role of travel restrictions in halting and delaying pandemics by using a model that explicitly integrates air travel and short-range mobility data with high-resolution demographic data across the world and that is validated by the accumulation of data from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1 pandemic by assessing the potential impact of mobility restrictions that vary with respect to their magnitude and their position in the pandemic timeline. We provide a quantitative discussion of the delay obtained by different mobility restrictions and the likelihood of containing outbreaks of infectious diseases at their source, confirming the limited value and feasibility of international travel restrictions. These results are rationalized in the theoretical framework characterizing the invasion dynamics of the epidemics at the metapopulation level.
Field theory for recurrent mobility
Understanding human mobility is crucial for applications such as forecasting epidemic spreading, planning transport infrastructure and urbanism in general. While, traditionally, mobility information has been collected via surveys, the pervasive adoption of mobile technologies has brought a wealth of (real time) data. The easy access to this information opens the door to study theoretical questions so far unexplored. In this work, we show for a series of worldwide cities that commuting daily flows can be mapped into a well behaved vector field, fulfilling the divergence theorem and which is, besides, irrotational. This property allows us to define a potential for the field that can become a major instrument to determine separate mobility basins and discern contiguous urban areas. We also show that empirical fluxes and potentials can be well reproduced and analytically characterized using the so-called gravity model, while other models based on intervening opportunities have serious difficulties. Systematic methods to characterize human mobility can lead to more accurate forecasting of epidemic spreading and better urban planning. Here the authors present a methodology to analyse daily commuting data by representing it with an irrotational vector field and a corresponding scalar potential.
Hierarchical organization of urban mobility and its connection with city livability
The recent trend of rapid urbanization makes it imperative to understand urban characteristics such as infrastructure, population distribution, jobs, and services that play a key role in urban livability and sustainability. A healthy debate exists on what constitutes optimal structure regarding livability in cities, interpolating, for instance, between mono- and poly-centric organization. Here anonymous and aggregated flows generated from three hundred million users, opted-in to Location History, are used to extract global Intra-urban trips. We develop a metric that allows us to classify cities and to establish a connection between mobility organization and key urban indicators. We demonstrate that cities with strong hierarchical mobility structure display an extensive use of public transport, higher levels of walkability, lower pollutant emissions per capita and better health indicators. Our framework outperforms previous metrics, is highly scalable and can be deployed with little cost, even in areas without resources for traditional data collection. The growing availability of human mobility data can help assess the structure and dynamics of urban environments and their relation to the performance of cities. Here the authors introduce a metric of hierarchy in urban travel and find correlations between levels of hierarchy and other urban indicators.
Multiscale mobility networks and the spatial spreading of infectious diseases
Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. To study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured metapopulation epidemic model a timescale-separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large-scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short-range mobility increases, however, the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multiscale framework.
The world-wide waste web
Countries globally trade with tons of waste materials every year, some of which are highly hazardous. This trade admits a network representation of the world-wide waste web, with countries as vertices and flows as directed weighted edges. Here we investigate the main properties of this network by tracking 108 categories of wastes interchanged in the period 2001–2019. Although, most of the hazardous waste was traded between developed nations, a disproportionate asymmetry existed in the flow from developed to developing countries. Using a dynamical model, we simulate how waste stress propagates through the network and affects the countries. We identify 28 countries with low Environmental Performance Index that are at high risk of waste congestion. Therefore, they are at threat of improper handling and disposal of hazardous waste. We find evidence of pollution by heavy metals, by volatile organic compounds and/or by persistent organic pollutants, which are used as chemical fingerprints, due to the improper handling of waste in several of these countries. The 2001–2019 web of international waste trade is investigated, allowing the identification of countries at threat of improper handling and disposal of waste. Chemical tracers are used to identify the environmental impact of waste in these countries.
Recent advances in urban system science: Models and data
Cities are characterized by the presence of a dense population with a high potential for interactions between individuals of diverse backgrounds. They appear in parallel to the Neolithic revolution a few millennia ago. The advantages brought in terms of agglomeration for economy, innovation, social and cultural advancements have kept them as a major landmark in recent human history. There are many different aspects to study in urban systems from a scientific point of view, one can concentrate in demography and population evolution, mobility, economic output, land use and urban planning, home accessibility and real estate market, energy and water consumption, waste processing, health, education, integration of minorities, just to name a few. In the last decade, the introduction of communication and information technologies have enormously facilitated the collection of datasets on these and other questions, making possible a more quantitative approach to city science. All these topics have been addressed in many works in the literature, and we do not intend to offer here a systematic review. Instead, we will only provide a brief taste of some of these above-mentioned aspects, which could serve as an introduction to the collection ‘Cities as Complex Systems’. Such a non-systematic view will lead us to leave outside many relevant papers, and for this we must apologise.
Aging effects in Schelling segregation model
The Schelling model has become a paradigm in social sciences to explain the emergence of residential spatial segregation, even in the presence of high tolerance to mixed neighborhoods by the side of citizens. In particular, we consider a noisy constrained version of the Schelling model, in which agents maximize its satisfaction, related to the composition of the local neighborhood, by infinite-range movements towards satisfying vacancies. We add to it an aging effect by making the probability of agents to move inversely proportional to the time they have been satisfied in their present location. This mechanism simulates the development of an emotional attachment to a location where an agent has been satisfied for a while. The introduction of aging has several major impacts on the model statics and dynamics: the phase transition between a segregated and a mixed phase of the original model disappears, and we observe segregated states with a high level of agent satisfaction even for high values of tolerance. In addition, the new segregated phase is dynamically characterized by a slow power-law coarsening process similar to a glassy-like dynamics.
From mobile phone data to the spatial structure of cities
Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral data but also provide information about the structure of cities and their dynamical properties. In this article, we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish cities. We first define an urban dilatation index which measures how the average distance between individuals evolves during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most crowded places in the city. We propose a parameter free method to detect them and to test the robustness of our results. The number of these hotspots scales sublinearly with the population size, a result in agreement with previous theoretical arguments and measures on employment datasets. We study the lifetime of these hotspots and show in particular that the hierarchy of permanent ones, which constitute the ‘heart’ of the city, is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows us to distinguish different categories of cities, from monocentric and “segregated” where the spatial distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is much more important. These results point towards the possibility of a new, quantitative classification of cities using high resolution spatio-temporal data.
Uncovering the spatial structure of mobility networks
The extraction of a clear and simple footprint of the structure of large, weighted and directed networks is a general problem that has relevance for many applications. An important example is seen in origin-destination matrices, which contain the complete information on commuting flows, but are difficult to analyze and compare. We propose here a versatile method, which extracts a coarse-grained signature of mobility networks, under the form of a 2 × 2 matrix that separates the flows into four categories. We apply this method to origin-destination matrices extracted from mobile phone data recorded in 31 Spanish cities. We show that these cities essentially differ by their proportion of two types of flows: integrated (between residential and employment hotspots) and random flows, whose importance increases with city size. Finally, the method allows the determination of categories of networks, and in the mobility case, the classification of cities according to their commuting structure. The availability of pervasive data has opened up possibilities for quantitative approaches to many phenomena, but extracting useful information from huge datasets is difficult. Here, Louail et al . propose a method to extract a coarse-grained signature of large weighted networks and apply it to mobility networks.