Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Ramos-Alvarez, Irene"
Sort by:
The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1–3) and group II (PAK4–6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Successful Lifetime/Long-Term Medical Treatment of Acid Hypersecretion in Zollinger-Ellison Syndrome (ZES): Myth or Fact? Insights from an Analysis of Results of NIH Long-Term Prospective Studies of ZES
Analysis of the efficacy/pharmacology of long-term/lifetime medical treatment of acid hypersecretion in a large cohort of ZES patients in a prospective study. This study includes the results from all 303 patients with established ZES who were prospectively followed and received acid antisecretory treatment with either H2Rs or PPIs, with antisecretory doses individually titrated by the results of regular gastric acid testing. The study includes patients treated for short-term periods (<5 yrs), patients treated long-term (>5 yrs), and patients with lifetime treatment (30%) followed for up to 48 years (mean 14 yrs). Long-term/lifelong acid antisecretory treatment with H2Rs/PPIs can be successfully carried out in all patients with both uncomplicated and complicated ZES (i.e., with MEN1/ZES, previous Billroth 2, severe GERD). This is only possible if drug doses are individually set by assessing acid secretory control to establish proven criteria, with regular reassessments and readjustments. Frequent dose changes both upward and downward are needed, as well as regulation of the dosing frequency, and there is a primary reliance on the use of PPIs. Prognostic factors predicting patients with PPI dose changes are identified, which need to be studied prospectively to develop a useful predictive algorithm that could be clinically useful for tailored long-term/lifetime therapy in these patients.
Peptide G-Protein-Coupled Receptors and ErbB Receptor Tyrosine Kinases in Cancer
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies (mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692 is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3. The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692 to impair transactivation and cancer growth.
Gastrin-Releasing Peptide Receptors Stimulate MAPK-Mediated Growth of Lung Cancer Cells by Transactivating HER4 in a Neuregulin-1, MAP Kinase-Dependent Manner Requiring Activation of the ROS-System
The bombesin (Bn) receptor family [Gastrin-releasing peptide (GRPR/BB2R) and Neuromedin B receptors (NMBR/BB1R)] are G-protein coupled receptors (GPCR’s) with potent growth effects on normal tissues/numerous cancers, often by transactivating the ErbB receptor-tyrosine kinase (RTK) family. Whereas GRPR stimulation transactivates ErbB RTKs EGFR, HER2, and HER3 in non-small cell lung-cancer (NSCLC) cells, its effects on HER4 are unknown. This study was designed to address this question. Of 12 NSCLC’s studied, 75% had HER4 mRNA expression and Western-Blotting. NCI-H522 and NCI-H661-cells had high levels of GRPR, HER4, and the HER4-ligand neuregulin (NRG1). Adding GRP to NCI-H522/NCI-H661-cells activated HER4, shown by its increased phosphorylation (P-HER4). The GRPR antagonists PD176252/BW2258U89 inhibited this increase. In NCI-H661-cells, GRP stimulated the formation of HER4-homodimers and HER2-HER4-heterodimers. Adding GRP to these NSCLC-cells increased P-ERK/P-AKT, which was inhibited by siRNA-HER4, PD176252, and ibrutinib, as well as N-acetylcysteine and Tiron, which reduce reactive-oxygen species (ROS). GRP increased secretion of NRG1 from NSCLC-cells, and NRG1 increased P-HER4 and P-ERK, which were impaired by ibrutinib. GRP and NRG1 stimulated proliferation of NSCLC-cells, which was inhibited by PD176252, siRNA-HER4, or ibrutinib and which was mediated by MAPK, not AKT/PI3K, activation. These results show GRPR activation results in HER4 transactivation in a ROS-dependent manner, which stimulates NSCLC-growth through a MAPK-mediated mechanism.
Long-Term Proton Pump Inhibitor–Acid Suppressive Treatment Can Cause Vitamin B12 Deficiency in Zollinger–Ellison Syndrome (ZES) Patients
Whether the long-term treatment of patients with proton pump inhibitors (PPIs) with different diseases [GERD, Zollinger–Ellison syndrome (ZES), etc.] can result in vitamin B12 (VB12) deficiency is controversial. In this study, in 175 patients undergoing long-term ZES treatment with anti-acid therapies, drug-induced control acid secretory rates were correlated with the presence/absence of VB12 deficiency, determined by assessing serum VB12 levels, measurements of VB12 body stores (blood methylmalonic acid (MMA) and total homocysteine[tHYC]), and other features of ZES. After a mean of 10.2 yrs. of any acid treatment (5.6 yrs. with PPIs), 21% had VB12 deficiency with significantly lower serum and body VB12 levels (p < 0.0001). The presence of VB12 deficiency did not correlate with any feature of ZES but was associated with a 12-fold lower acid control rate, a 2-fold higher acid control pH (6.4 vs. 3.7), and acid control secretory rates below those required for the activation of pepsin (pH > 3.5). Over a 5-yr period, the patients with VB12 deficiency had a higher rate of achlorhydria (73% vs. 24%) and a lower rate of normal acid secretion (0% vs. 49%). In conclusion, in ZES patients, chronic long-term PPI treatment results in marked acid hyposecretion, resulting in decreased serum VB12 levels and decreased VB12-body stores, which can result in VB12 deficiency.
Insights into Effects/Risks of Chronic Hypergastrinemia and Lifelong PPI Treatment in Man Based on Studies of Patients with Zollinger–Ellison Syndrome
The use of proton pump inhibitors (PPIs) over the last 30 years has rapidly increased both in the United States and worldwide. PPIs are not only very widely used both for approved indications (peptic ulcer disease, gastroesophageal reflux disease (GERD), Helicobacter pylori eradication regimens, stress ulcer prevention), but are also one of the most frequently off-label used drugs (25–70% of total). An increasing number of patients with moderate to advanced gastroesophageal reflux disease are remaining on PPI indefinitely. Whereas numerous studies show PPIs remain effective and safe, most of these studies are <5 years of duration and little data exist for >10 years of treatment. Recently, based primarily on observational/epidemiological studies, there have been an increasing number of reports raising issues about safety and side-effects with very long-term chronic treatment. Some of these safety issues are related to the possible long-term effects of chronic hypergastrinemia, which occurs in all patients taking chronic PPIs, others are related to the hypo-/achlorhydria that frequently occurs with chronic PPI treatment, and in others the mechanisms are unclear. These issues have raised considerable controversy in large part because of lack of long-term PPI treatment data (>10–20 years). Zollinger–Ellison syndrome (ZES) is caused by ectopic secretion of gastrin from a neuroendocrine tumor resulting in severe acid hypersecretion requiring life-long antisecretory treatment with PPIs, which are the drugs of choice. Because in <30% of patients with ZES, a long-term cure is not possible, these patients have life-long hypergastrinemia and require life-long treatment with PPIs. Therefore, ZES patients have been proposed as a good model of the long-term effects of hypergastrinemia in man as well as the effects/side-effects of very long-term PPI treatment. In this article, the insights from studies on ZES into these controversial issues with pertinence to chronic PPI use in non-ZES patients is reviewed, primarily concentrating on data from the prospective long-term studies of ZES patients at NIH.
Long-Term Proton Pump Inhibitor-Acid Suppressive Treatment Can Cause Vitamin B 12 Deficiency in Zollinger-Ellison Syndrome (ZES) Patients
Whether the long-term treatment of patients with proton pump inhibitors (PPIs) with different diseases [GERD, Zollinger-Ellison syndrome (ZES), etc.] can result in vitamin B (VB ) deficiency is controversial. In this study, in 175 patients undergoing long-term ZES treatment with anti-acid therapies, drug-induced control acid secretory rates were correlated with the presence/absence of VB deficiency, determined by assessing serum VB levels, measurements of VB body stores (blood methylmalonic acid (MMA) and total homocysteine[tHYC]), and other features of ZES. After a mean of 10.2 yrs. of any acid treatment (5.6 yrs. with PPIs), 21% had VB deficiency with significantly lower serum and body VB levels ( < 0.0001). The presence of VB deficiency did not correlate with any feature of ZES but was associated with a 12-fold lower acid control rate, a 2-fold higher acid control pH (6.4 vs. 3.7), and acid control secretory rates below those required for the activation of pepsin (pH > 3.5). Over a 5-yr period, the patients with VB deficiency had a higher rate of achlorhydria (73% vs. 24%) and a lower rate of normal acid secretion (0% vs. 49%). In conclusion, in ZES patients, chronic long-term PPI treatment results in marked acid hyposecretion, resulting in decreased serum VB levels and decreased VB -body stores, which can result in VB deficiency.
Predictive Factors for Resistant Disease with Medical/Radiologic/Liver-Directed Anti-Tumor Treatments in Patients with Advanced Pancreatic Neuroendocrine Neoplasms: Recent Advances and Controversies
Purpose: Recent advances in the diagnosis, management and nonsurgical treatment of patients with advanced pancreatic neuroendocrine neoplasms (panNENs) have led to an emerging need for sensitive and useful prognostic factors for predicting responses/survival. Areas covered: The predictive value of a number of reported prognostic factors including clinically-related factors (clinical/laboratory/imaging/treatment-related factors), pathological factors (histological/classification/grading), and molecular factors, on therapeutic outcomes of anti-tumor medical therapies with molecular targeting agents (everolimus/sunitinib/somatostatin analogues), chemotherapy, radiological therapy with peptide receptor radionuclide therapy, or liver-directed therapies (embolization/chemoembolization/radio-embolization (SIRTs)) are reviewed. Recent findings in each of these areas, as well as remaining controversies and uncertainties, are discussed in detail, particularly from the viewpoint of treatment sequencing. Conclusions: The recent increase in the number of available therapeutic agents for the nonsurgical treatment of patients with advanced panNENs have raised the importance of prognostic factors predictive for therapeutic outcomes of each treatment option. The establishment of sensitive and useful prognostic markers will have a significant impact on optimal treatment selection, as well as in tailoring the therapeutic sequence, and for maximizing the survival benefit of each individual patient. In the paper, the progress in this area, as well as the controversies/uncertainties, are reviewed.
Using population genetics and demographic reconstruction to predict outcomes of genetic rescue for an endangered songbird
Genetic rescue can be a successful way to restore species genetic diversity, but it can also lead to outbreeding depression (decreases in hybrid fitness) if attempted in incompatible populations. Thus, population genetic profiles and demographic history are needed to evaluate the feasibility of translocation. We used population genetic analyses and Approximate Bayesian Computation (ABC) to assess genetic rescue as an option for two populations of the yellow-shouldered blackbird (Agelaius xanthomus), an endangered Puerto Rico endemic. The candidate recipient population, a managed population in Pitahaya (southwestern Puerto Rico), had been characterized previously for its mating system and population genetics. Here, we used nine microsatellite loci to measure the genetic diversity of a candidate source population, a subspecies (A. x. monensis) on Mona Island, 66 km west of Puerto Rico. We compared genetic diversity and inferred historical and contemporary gene flow between the two populations. We found clear population structure and no migration between populations, as well as evidence that the Mona population descended from the Pitahaya population approximately 95 generations ago. Despite the historical gene flow, the degree of contemporary genetic and environmental divergence means the Mona population may not be suitable for immediate use as a source population. We recommend (a) further investigating whether the observed population structure is due to adaptive or neutral forces, (b) testing the Mona population for behavioral plasticity in different environments, and (c) evaluating other source populations in addition to the Mona population for genetic rescue.