Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Ranc, Nathan"
Sort by:
Performance tradeoffs in target-group bias correction for species distribution models
Species distribution models (SDMs) are often calibrated using presence-only datasets plagued with environmental sampling bias, which leads to a decrease of model accuracy. In order to compensate for this bias, it has been suggested that background data (or pseudoabsences) should represent the area that has been sampled. However, spatially-explicit knowledge of sampling effort is rarely available. In multi-species studies, sampling effort has been inferred following the target-group (TG) approach, where aggregated occurrence of TG species informs the selection of background data. However, little is known about the species- specific response to this type of bias correction. The present study aims at evaluating the impacts of sampling bias and bias correction on SDM performance. To this end, we designed a realistic system of sampling bias and virtual species based on 92 terrestrial mammal species occurring in the Mediterranean basin. We manipulated presence and background data selection to calibrate four SDM types. Unbiased (unbiased presence data) and biased (biased presence data) SDMs were calibrated using randomly distributed background data. We used real and TG-estimated sampling efforts in background selection to correct for sampling bias in presence data. Overall, environmental sampling bias had a deleterious effect on SDM performance. In addition, bias correction improved model accuracy, and especially when based on spatially-explicit knowledge of sampling effort. However, our results highlight important species-specific variations in susceptibility to sampling bias, which were largely explained by range size: widely-distributed species were most vulnerable to sampling bias and bias correction was even detrimental for narrow-ranging species. Furthermore, spatial discrepancies in SDM predictions suggest that bias correction effectively replaces an underestimation bias with an overestimation bias, particularly in areas of low sampling intensity. Thus, our results call for a better estimation of sampling effort in multispecies system, and cautions the uninformed and automatic application of TG bias correction.
Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability
The link between spatio-temporal resource patterns and animal movement behaviour is a key ecological process, however, limited experimental support for this connection has been produced at the home range scale. In this study, we analysed the spatial responses of a resident large herbivore (roe deer Capreolus capreolus ) using an in situ manipulation of a concentrated food resource. Specifically, we experimentally altered feeding site accessibility to roe deer and recorded (for 25 animal-years) individual responses by GPS tracking. We found that, following the loss of their preferred resource, roe deer actively tracked resource dynamics leading to more exploratory movements, and larger, spatially-shifted home ranges. Then, we showed, for the first time experimentally, the importance of site fidelity in the maintenance of large mammal home ranges by demonstrating the return of individuals to their familiar, preferred resource despite the presence of alternate, equally-valuable food resources. This behaviour was modulated at the individual level, where roe deer characterised by a high preference for feeding sites exhibited more pronounced behavioural adjustments during the manipulation. Together, our results establish the connections between herbivore movements, space-use, individual preference, and the spatio-temporal pattern of resources in home ranging behaviour.
Ecological and Behavioral Drivers of Supplemental Feeding Use by Roe Deer Capreolus capreolus in a Peri-Urban Context
Winter supplemental feeding of ungulates potentially alters their use of resources and ecological interactions, yet relatively little is known about the patterns of feeding sites use by target populations. We used camera traps to continuously monitor winter and spring feeding site use in a roe deer population living in a peri-urban area in Northern Italy. We combined circular statistics with generalized additive and linear mixed models to analyze the diel and seasonal pattern of roe deer visits to feeding sites, and the behavioral drivers influencing visit duration. Roe deer visits peaked at dawn and dusk, and decreased from winter to spring when vegetation regrows and temperature increases. Roe deer mostly visited feeding sites solitarily; when this was not the case, they stayed longer at the site, especially when conspecifics were eating, but maintained a bimodal diel pattern of visits. These results support an opportunistic use of feeding sites, following seasonal cycles and the roe deer circadian clock. Yet, the attractiveness of these artificial resources has the potential to alter intra-specific relationships, as competition for their use induces gatherings and may extend the contact time between individuals, with potential behavioral and epidemiological consequences.
The timing and spatial distribution of mother–offspring interactions in an obligate hider
Background Parental care is indispensable for the survival and development of dependent offspring, often requiring a delicate balance of time and energy allocation towards offspring by parents. Among ungulates employing a hider strategy, deciding when and where to provide care while also maintaining a sufficient distance to not reveal the offspring´s hiding place is likely crucial in determining their fate. Methods In this study, we analyzed the timing and spatial distribution of mother–offspring interactions in roe deer females ( Capreolus capreolus L. ). We fitted roe deer mothers and their neonates with GPS-collars combined with a proximity sensor in south Germany to address the spatial and temporal distribution of mother-fawn interactions during the first two months of the fawns’ lives. Results We observed variations in the distance between mother and fawn, which initially increased over the first month and then decreased as the fawns grew older. The timing of mother-fawn contacts was strongly linked with the circadian rhythm of the mother, aligning closely with their typical bimodal activity peaks at dawn and dusk. Furthermore, we observed differences in habitat use between mother and offspring, reflecting the mother's requirements for food and protection (e.g. greater use of forests, higher distances to roads), as well as the fawn's priority requirement for protection (e.g. higher use of unmown grassland). We documented variations over time, highlighting how these requirements changed as the fawn ages. Interestingly, during the initial two weeks, most of the contacts occurred in habitats that were particularly favored by mothers. However, as the fawns aged, contacts occurred increasingly often in habitats that were routinely used by fawns. Conclusions Understanding the timing, frequency, and spatial distribution of mother–offspring interactions provides valuable insights into the care strategies of hider ungulates. The observation that mothers leave their fawns in agricultural fields during the first few weeks of life has strong implications for wildlife management, as this behavior constitutes a kind of evolutionary trap under current agricultural practices and mowing regimes. Whether females can adjust their maternal care tactics to these novel selection pressures in human-altered landscapes is likely key to predicting the population dynamics of this obligate hider.
Roads constrain movement across behavioural processes in a partially migratory ungulate
Background Human disturbance alters animal movement globally and infrastructure, such as roads, can act as physical barriers that impact behaviour across multiple spatial scales. In ungulates, roads can particularly hamper key ecological processes such as dispersal and migration, which ensure functional connectivity among populations, and may be particularly important for population performance in highly human-dominated landscapes. The impact of roads on some aspects of ungulate behaviour has already been studied. However, potential differences in response to roads during migration, dispersal and home range movements have never been evaluated. Addressing these issues is particularly important to assess the resistance of European landscapes to the range of wildlife movement processes, and to evaluate how animals adjust to anthropogenic constraints. Methods We analysed 95 GPS trajectories from 6 populations of European roe deer ( Capreolus capreolus ) across the Alps and central Europe. We investigated how roe deer movements were affected by landscape characteristics, including roads, and we evaluated potential differences in road avoidance among resident, migratory and dispersing animals (hereafter, movement modes). First, using Net Squared Displacement and a spatio-temporal clustering algorithm, we classified individuals as residents, migrants or dispersers. We then identified the start and end dates of the migration and dispersal trajectories, and retained only the GPS locations that fell between those dates (i.e., during transience). Finally, we used the resulting trajectories to perform an integrated step selection analysis. Results We found that roe deer moved through more forested areas during the day and visited less forested areas at night. They also minimised elevation gains and losses along their movement trajectories. Road crossings were strongly avoided at all times of day, but when they occurred, they were more likely to occur during longer steps and in more forested areas. Road avoidance did not vary among movement modes and, during dispersal and migration, it remained high and consistent with that expressed during home range movements. Conclusions Roads can represent a major constraint to movement across modes and populations, potentially limiting functional connectivity at multiple ecological scales. In particular, they can affect migrating individuals that track seasonal resources, and dispersing animals searching for novel ranges.
Experimental evidence of memory-based foraging decisions in a large wild mammal
Many animals restrict their movements to a characteristic home range. This constrained pattern of space use is thought to result from the foraging benefits of memorizing the locations and quality of heterogeneously distributed resources. However, due to the confounding effects of sensory perception, the role of memory in home-range movement behavior lacks definitive evidence in the wild. Here, we analyze the foraging decisions of a large mammal during a field resource manipulation experiment designed to disentangle the effects of memory and perception. We parametrize a mechanistic model of spatial transitions using experimental data to quantify the cognitive processes underlying animal foraging behavior and to predict how individuals respond to resource heterogeneity in space and time. We demonstrate that roe deer (Capreolus capreolus) rely on memory, not perception, to track the spatiotemporal dynamics of resources within their home range. Roe deer foraging decisions were primarily based on recent experience (half-lives of 0.9 and 5.6 d for attribute and spatial memory, respectively), enabling them to adapt to sudden changes in resource availability. The proposed memory-based model was able to both quantify the cognitive processes underlying roe deer behavior and accurately predict how they shifted resource use during the experiment. Our study highlights the fact that animal foraging decisions are based on incomplete information on the locations of available resources, a factor that is critical to developing accurate predictions of animal spatial behavior but is typically not accounted for in analyses of animal movement in the wild.
Large carnivore expansion in Europe is associated with human population density and land cover changes
Cimatti, M., Ranc, N., Benítez-López, A., Maiorano, L., Boitani, L., Cagnacci, F., Čengić, M., Ciucci, P., Huijbregts, M.A.J., Krofel, M., López-Bao, J.V., Selva, N., Andren, H., Bautista, C., Ćirović, D., Hemmingmoore, H., Reinhardt, I., Marenče, M., Mertzanis, Y., Pedrotti, L., Trbojević, I., Zetterberg, A., Zwijacz-Kozica, T., Santini, L.
Spatial heterogeneity facilitates carnivore coexistence
Competitively dominant carnivore species can limit the population sizes and alter the behavior of inferior competitors. Established mechanisms that enable carnivore coexistence include spatial and temporal avoidance of dominant predator species by subordinates, and dietary niche separation. However, spatial heterogeneity across landscapes could provide inferior competitors with refuges in the form of areas with lower competitor density and/or locations that provide concealment from competitors. Here, we combine temporally overlapping telemetry data from dominant lions (Panthera leo) and subordinate African wild dogs (Lycaon pictus) with high-resolution remote sensing in an integrated step selection analysis to investigate how fine-scaled landscape heterogeneity might facilitate carnivore coexistence in South Africa’s Hluhluwe-iMfolozi Park, where both predators occur at exceptionally high densities. We ask whether the primary lion-avoidance strategy of wild dogs is spatial avoidance of lions or areas frequented by lions, or if wild dogs selectively use landscape features to avoid detection by lions. Within this framework, we also test whether wild dogs rely on proactive or reactive responses to lion risk. In contrast to previous studies finding strong spatial avoidance of lions by wild dogs, we found that the primary wild dog lion-avoidance strategy was to select landscape features that aid in avoidance of lion detection. This habitat selection was routinely used by wild dogs, and especially when in areas and during times of high lion-encounter risk, suggesting a proactive response to lion risk. Our findings suggest that spatial landscape heterogeneity could represent an alternative mechanism for carnivore coexistence, especially as evershrinking carnivore ranges force inferior competitors into increased contact with dominant species.
Cluster-based trajectory segmentation with local noise
We present a framework for the partitioning of a spatial trajectory in a sequence of segments based on spatial density and temporal criteria. The result is a set of temporally separated clusters interleaved by sub-sequences of unclustered points. A major novelty is the proposal of an outlier or noise model based on the distinction between intra-cluster (local noise) and inter-cluster noise (transition): the local noise models the temporary absence from a residence while the transition the definitive departure towards a next residence. We analyze in detail the properties of the model and present a comprehensive solution for the extraction of temporally ordered clusters. The effectiveness of the solution is evaluated first qualitatively and next quantitatively by contrasting the segmentation with ground truth. The ground truth consists of a set of trajectories of labeled points simulating animal movement. Moreover, we show that the approach can streamline the discovery of additional derived patterns, by presenting a novel technique for the analysis of periodic movement. From a methodological perspective, a valuable aspect of this research is that it combines the theoretical investigation with the application and external validation of the segmentation framework. This paves the way to an effective deployment of the solution in broad and challenging fields such as e-science.
The Interplay Between Memory and Resource Preferences Drives Animal Space-Use Patterns
Many animals restrict their movements to a characteristic home range – a space-use pattern that is thought to result from the benefits of memorizing the locations and quality of heterogeneously distributed resources. Our understanding of how memory influences movements, and resulting space-use patterns, in nature is still in its infancy. In Chapter 1, I analyse the spatial responses of a resident large herbivore (roe deer Capreolus capreolus) to an in situ resource manipulation experiment. I show that roe deer actively tracked spatio-temporal resource patterns leading to shifts in their movements and space-use. I further demonstrate that these behavioural adjustments are mediated by both individual resource preferences, and site familiarity. In Chapter 2, I develop a spatial transition model to uncover the cognitive processes underlying roe deer foraging decisions during a field resource manipulation experiment designed to disentangle the effects of memory and perception. I demonstrate that roe deer rely on memory, not perception, to track the spatio-temporal dynamics of resources within their home range – a behaviour that can accurately be predicted by the proposed model. In Chapter 3, I formulate a mechanistic movement model to quantify the role of memory in the movements of roe deer reintroduced into a novel environment. I show that an interplay between memory and resource preferences was the primary process influencing roe deer movements; and that it led to the formation of characteristic home ranges, as observed in the released individuals. In Chapter 4, I propose a mathematical model for home range formation that incorporates the influences of memory and resource preferences. By combining mechanistic modelling with field experiments, this Dissertation uncovers the role of memory in animal movements, and home range formation in nature.