Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
101 result(s) for "Randolph, Adrienne G"
Sort by:
Exuberant fibroblast activity compromises lung function via ADAMTS4
Severe respiratory infections can result in acute respiratory distress syndrome (ARDS) 1 . There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS 1 , 2 . Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes—in particular the ECM protease ADAMTS4—and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections. Viral infection of the respiratory system induces exuberant fibroblast activity, resulting in extensive remodelling of the extracellular matrix and cytokine release, which promote immune cell infiltration of the affected area at the expense of respiratory function.
Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C
Neutralization capacity of antibodies against Omicron after a prior SARS-CoV-2 infection in children and adolescents is not well studied. Therefore, we evaluated virus-neutralizing capacity against SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants by age-stratified analyses (<5, 5–11, 12–21 years) in 177 pediatric patients hospitalized with severe acute COVID-19, acute MIS-C, and in convalescent samples of outpatients with mild COVID-19 during 2020 and early 2021. Across all patients, less than 10% show neutralizing antibody titers against Omicron. Children <5 years of age hospitalized with severe acute COVID-19 have lower neutralizing antibodies to SARS-CoV-2 variants compared with patients >5 years of age. As expected, convalescent pediatric COVID-19 and MIS-C cohorts demonstrate higher neutralization titers than hospitalized acute COVID-19 patients. Overall, children and adolescents show some loss of cross-neutralization against all variants, with the most pronounced loss against Omicron. In contrast to SARS-CoV-2 infection, children vaccinated twice demonstrated higher titers against Alpha, Beta, Gamma, Delta and Omicron. These findings can influence transmission, re-infection and the clinical disease outcome from emerging SARS-CoV-2 variants and supports the need for vaccination in children. The antibody response to the SARS-CoV-2 Omicron variant is not well studied in children. Here, the authors provide an age-stratified analysis of SARS-CoV-2 neutralizing capacity of sera from children with acute or convalescent COVID-19 as well as children with multisystem inflammatory syndrome.
Neutralization of SARS-CoV-2 Omicron BQ.1, BQ.1.1 and XBB.1 variants following SARS-CoV-2 infection or vaccination in children
Emergence of highly transmissible Omicron subvariants led to increased SARS-CoV-2 infection and disease in children. However, minimal knowledge exists regarding the neutralization capacity against circulating Omicron BA.4/BA.5, BA.2.75, BQ.1, BQ.1.1 and XBB.1 subvariants following SARS-CoV-2 vaccination in children versus during acute or convalescent COVID-19, or versus multisystem inflammatory syndrome (MIS-C). Here, we evaluate virus-neutralizing capacity against SARS-CoV-2 variants in 151 age-stratified children ( <5, 5–11, 12–21 years old) hospitalized with acute severe COVID-19 or MIS-C or convalescent mild (outpatient) infection compared with 62 age-stratified vaccinated children. An age-associated effect on neutralizing antibodies is observed against SARS-CoV-2 following acute COVID-19 or vaccination. The primary series BNT162b2 mRNA vaccinated adolescents show higher vaccine-homologous WA-1 neutralizing titers compared with <12 years vaccinated children. Post-infection antibodies did not neutralize BQ.1, BQ.1.1 and XBB.1 subvariants. In contrast, monovalent mRNA vaccination induces more cross-neutralizing antibodies in young children <5 years against BQ.1, BQ.1.1 and XBB.1 variants compared with ≥5 years old children. Our study demonstrates that in children, infection and monovalent vaccination-induced neutralization activity is low against BQ.1, BQ.1.1 and XBB.1 variants. These findings suggest a need for improved SARS-CoV-2 vaccines to induce durable, more cross-reactive neutralizing antibodies to provide effective protection against emerging variants in children. In this work, authors investigate the virus-neutralizing capacity in children against circulating BQ.1, BQ.1.1 and XBB.1 SARS-CoV-2 variants. Vaccination induced more neutralizing antibodies against BQ.1.1 and XBB.1 in youngest children ( < 5 years) compared with >5 years children.
Effectiveness of Influenza Vaccine Against Life-threatening RT-PCR-confirmed Influenza Illness in US Children, 2010-2012
Background. No studies have examined the effectiveness of influenza vaccine against intensive care unit (ICU) admission associated with influenza virus infection among children. Methods. In 2010-2011 and 2011-2012, children aged 6 months to 17 years admitted to 21 US pediatrie intensive care units (PICUs) with acute severe respiratory illness and testing positive for influenza were enrolled as cases; children who tested negative were PICU controls. Community controls were children without an influenza-related hospitalization, matched to cases by comorbidities and geographic region. Vaccine effectiveness was estimated with logistic regression models. Results. We analyzed data from 44 cases, 172 PICU controls, and 93 community controls. Eighteen percent of cases, 31% of PICU controls, and 51% of community controls were fully vaccinated. Compared to unvaccinated chüdren, chüdren who were fully vaccinated were 74% (95% CI, 19% to 91%) or 82% (95% CI, 23% to 96%) less likely to be admitted to a PICU for influenza compared to PICU controls or community controls, respectively. Receipt of 1 dose of vaccine among chüdren for whom 2 doses were recommended was not protective. Conclusions. During the 2010-2011 and 2011-2012 US influenza seasons, influenza vaccination was associated with a three-quarters reduction in the risk of life-threatening influenza illness in children.
Immunology of SARS-CoV-2 infection in children
Children and adolescents exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with the majority having minimal to mild symptoms. Additionally, some succumb to a severe hyperinflammatory post-infectious complication called multisystem inflammatory syndrome in children (MIS-C), predominantly affecting previously healthy individuals. Studies characterizing the immunological differences associated with these clinical outcomes have identified pathways important for host immunity to SARS-CoV-2 and innate modulators of disease severity. In this Review, we delineate the immunological mechanisms underlying the spectrum of pediatric immune response to SARS-CoV-2 infection in comparison with that of adults.Children are generally resistant to severe disease resulting from SARS-CoV-2 infection, but cases of pediatric COVID-19 and a new syndrome called MIS-C can occur. In this Review, the authors summarize what is known about the immunology of COVID-19 and MIS-C and how the pediatric response to SARS-CoV-2 is different from the immune response in adults.
Type I interferon signature and cycling lymphocytes in macrophage activation syndrome
BACKGROUNDMacrophage activation syndrome (MAS) is a life-threatening complication of Still's disease (SD) characterized by overt immune cell activation and cytokine storm. We aimed to further understand the immunologic landscape of SD and MAS.METHODWe profiled PBMCs from people in a healthy control group and patients with SD with or without MAS using bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq). We validated and expanded the findings by mass cytometry, flow cytometry, and in vitro studies.RESULTSBulk RNA-Seq of PBMCs from patients with SD-associated MAS revealed strong expression of genes associated with type I interferon (IFN-I) signaling and cell proliferation, in addition to the expected IFN-γ signal, compared with people in the healthy control group and patients with SD without MAS. scRNA-Seq analysis of more than 65,000 total PBMCs confirmed IFN-I and IFN-γ signatures and localized the cell proliferation signature to cycling CD38+HLA-DR+ cells within CD4+ T cell, CD8+ T cell, and NK cell populations. CD38+HLA-DR+ lymphocytes exhibited prominent IFN-γ production, glycolysis, and mTOR signaling. Cell-cell interaction modeling suggested a network linking CD38+HLA-DR+ lymphocytes with monocytes through IFN-γ signaling. Notably, the expansion of CD38+HLA-DR+ lymphocytes in MAS was greater than in other systemic inflammatory conditions in children. In vitro stimulation of PBMCs demonstrated that IFN-I and IL-15 - both elevated in MAS patients - synergistically augmented the generation of CD38+HLA-DR+ lymphocytes, while Janus kinase inhibition mitigated this response.CONCLUSIONMAS associated with SD is characterized by overproduction of IFN-I, which may act in synergy with IL-15 to generate CD38+HLA-DR+ cycling lymphocytes that produce IFN-γ.
The Notch1/CD22 signaling axis disrupts Treg function in SARS-CoV-2–associated multisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.
Unsupervised outlier detection applied to SARS-CoV-2 nucleotide sequences can identify sequences of common variants and other variants of interest
As of June 2022, the GISAID database contains more than 11 million SARS-CoV-2 genomes, including several thousand nucleotide sequences for the most common variants such as delta or omicron. These SARS-CoV-2 strains have been collected from patients around the world since the beginning of the pandemic. We start by assessing the similarity of all pairs of nucleotide sequences using the Jaccard index and principal component analysis. As shown previously in the literature, an unsupervised cluster analysis applied to the SARS-CoV-2 genomes results in clusters of sequences according to certain characteristics such as their strain or their clade. Importantly, we observe that nucleotide sequences of common variants are often outliers in clusters of sequences stemming from variants identified earlier on during the pandemic. Motivated by this finding, we are interested in applying outlier detection to nucleotide sequences. We demonstrate that nucleotide sequences of common variants (such as alpha, delta, or omicron) can be identified solely based on a statistical outlier criterion. We argue that outlier detection might be a useful surveillance tool to identify emerging variants in real time as the pandemic progresses.
Use of procalcitonin in therapeutic decisions in the pediatric intensive care unit
Procalcitonin (PCT) is frequently used by clinicians in children with suspected bacterial infections and sepsis. However interpretation in the critically ill child may be challenging due to the complexity of underlying conditions and its impact on PCT values. Herein, we propose a guidance for the use of procalcitonin in critically ill children, supported by a comprehensive analysis of the literature, to help the clinician for interpreting PCT in the various clinical conditions encountered in pediatric intensive care units. We describe the importance of the clinical context, timing of measurement and evidence on PCT values in diagnosing sepsis and to guide antibiotic therapy in critically ill children. Graphical abstract
Multisystem Inflammatory-like Syndrome in a Child Following COVID-19 mRNA Vaccination
A 12-year-old male was presented to the hospital with acute encephalopathy, headache, vomiting, diarrhea, and elevated troponin after recent COVID-19 vaccination. Two days prior to admission and before symptom onset, he received the second dose of the Pfizer-BioNTech COVID-19 vaccine. Symptoms developed within 24 h with worsening neurologic symptoms, necessitating admission to the pediatric intensive care unit. Brain magnetic resonance imaging within 16 h of admission revealed a cytotoxic splenial lesion of the corpus callosum (CLOCC). Nineteen days prior to admission, he developed erythema migrans, and completed an amoxicillin treatment course for clinical Lyme disease. However, Lyme antibody titers were negative on admission and nine days later, making active Lyme disease an unlikely explanation for his presentation to hospital. An extensive workup for other etiologies on cerebrospinal fluid and blood samples was negative, including infectious and autoimmune causes and known immune deficiencies. Three weeks after hospital discharge, all of his symptoms had dissipated, and he had a normal neurologic exam. Our report highlights a potential role of mRNA vaccine-induced immunity leading to MIS-C-like symptoms with cardiac involvement and a CLOCC in a recently vaccinated child and the complexity of establishing a causal association with vaccination. The child recovered without receipt of immune modulatory treatment.