Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Randriatafika, Faly"
Sort by:
Effects of Habitat Quality and Seasonality on Ranging Patterns of Collared Brown Lemur (Eulemur collaris) in Littoral Forest Fragments
Degraded forest habitats typically show low fruit availability and scattered fruit tree distribution. This has been shown to force frugivorous primates either to move further in search of food, resulting in large home ranges, or to use energy saving strategies. Malagasy lemurs are known to face pronounced seasonality and resource unpredictability, which is amplified by the overall reduction in food availability due to the human-driven habitat disturbance on the island. To explore lemur flexibility to habitat disturbance, we examined the ranging behavior of collared brown lemurs ( Eulemur collaris ) in two differently degraded fragments of littoral forest of southeastern Madagascar. We collected data from February 2011 to January 2012 on two groups living in a degraded area and two groups living in a less disturbed forest. We calculated annual ranges, monthly ranges, and daily distance traveled. We then ran repeated measures ANOVAs using seasonality as dichotomous, intrasubject factor and site/group as intersubject nested factors. In the degraded forest, the lemurs had larger monthly ranges, and their annual ranges were either fragmented or characterized by multiple core areas. They were able to use a habitat mosaic that also included nonforested areas and swamps. In addition, they shortened their daily path length, possibly to preserve energy, and used different areas of their annual home ranges seasonally. Although a number of possible confounding factors may have been responsible for the observed differences between sites, our findings highlight the ranging flexibility of collared brown lemurs in littoral forest fragments.
The Use of an Invasive Species Habitat by a Small Folivorous Primate: Implications for Lemur Conservation in Madagascar
The lemurs of Madagascar are among the most threatened mammalian taxa in the world, with habitat loss due to shifting cultivation and timber harvest heavily contributing to their precarious state. Deforestation often leads to fragmentation, resulting in mixed-habitat matrices throughout a landscape where disturbed areas are prone to invasion by exotic plants. Our study site, the Mandena littoral forest (southeast Madagascar), is a matrix of littoral forest, littoral swamp, and Melaleuca swamp habitats. Here, Melaleuca quinquenervia has invaded the wetland ecosystem, creating a mono-dominant habitat that currently provides the only potential habitat corridor between forest fragments. We sought to understand the role of this invasive Melaleuca swamp on the behavioral ecology of a threatened, small-bodied folivore, the southern bamboo lemur (Hapalemur meridionalis). We collected botanical and behavioral data on four groups of H. meridionalis between January and December 2013. Our results confirm Melaleuca swamp as an important part of their home range: while lemurs seasonally limited activities to certain habitats, all groups were capable of utilizing this invasive habitat for feeding and resting. Furthermore, the fact that Hapalemur use an invasive plant species as a dispersal corridor increases our knowledge of their ecological flexibility, and may be useful in the conservation management of remaining threatened populations.
Challenges of next‐generation sequencing in conservation management: Insights from long‐term monitoring of corridor effects on the genetic diversity of mouse lemurs in a fragmented landscape
Long‐term genetic monitoring of populations is essential for efforts aimed at preserving genetic diversity of endangered species. Here, we employ a framework of long‐term genetic monitoring to evaluate the effects of fragmentation and the effectiveness of the establishment of corridors in restoring population connectivity and genetic diversity of mouse lemurs Microcebus ganzhorni. To this end, we supplement estimates of neutral genetic diversity with the assessment of adaptive genetic variability of the major histocompatibility complex (MHC). In addition, we address the challenges of long‐term genetic monitoring of functional diversity by comparing the genotyping performance and estimates of MHC variability generated by single‐stranded conformation polymorphism (SSCP)/Sanger sequencing with those obtained by high‐throughput sequencing (next‐generation sequencing [NGS], Illumina), an issue that is particularly relevant when previous work serves as a baseline for planning management strategies that aim to ensure the viability of a population. We report that SSCP greatly underestimates individual diversity and that discrepancies in estimates of MHC diversity attributable to the comparisons of traditional and NGS genotyping techniques can influence the conclusions drawn from conservation management scenarios. Evidence of migration among fragments in Mandena suggests that mouse lemurs are robust to the process of fragmentation and that the effect of corridors is masked by ongoing gene flow. Nonetheless, results based on a larger number of shared private alleles at neutral loci between fragment pairs found after the establishment of corridors in Mandena suggest that gene flow is augmented as a result of enhanced connectivity. Our data point out that despite low effective population size, M. ganzhorni maintains high individual heterozygosity at neutral loci and at MHC II DRB gene and that selection plays a predominant role in maintaining MHC diversity. These findings highlight the importance of long‐term genetic monitoring in order to disentangle between the processes of drift and selection maintaining adaptive genetic diversity in small populations.
Ecological Flexibility as Measured by the Use of Pioneer and Exotic Plants by Two Lemurids: Eulemur collaris and Hapalemur meridionalis
Primate responses to habitat alteration vary depending on the species’ dietary guild and forest type. Leaves from secondary vegetation can provide nutritious resources to folivorous primates, whereas frugivores, burdened with a scattered spatial and temporal distribution of fruiting resources, require larger home ranges, potentially limiting their ability to cope with altered landscapes. Within coastal southeastern Madagascar, we sought to determine whether two lemur species occupying contrasting ecological niches respond differently to the changing features of their degraded and fragmented habitat. We conducted behavioral observations between 2011 and 2013 on frugivorous collared brown lemurs ( Eulemur collaris ) and folivorous southern bamboo lemurs ( Hapalemur meridionalis ). To estimate the ability of lemurs to use pioneer species, we categorized all plants used for feeding and resting as fast growing, mid-growing, or slow growing. We fitted general linear mixed-effects models, one for each plant growth category with monthly proportional use rates as the dependent variable, and included species ( E. collaris and H. meridionalis ), activity (feeding and resting), and season (dry and wet) as fixed effects. Our results show that E. collaris used both slow- and mid-growing plant species most often, while H. meridionalis were more likely to use fast-growing plants, which indicated an ability to use secondary/disturbed vegetation. Frugivorous E. collaris appear more limited by climax plants, while folivorous H. meridionalis appear to be slightly more adaptable, a finding that is consistent with that for other primate folivores.
The Use of an Invasive Species Habitat by a Small Folivorous Primate: Implications for Lemur Conservation in Madagascar: e0140981
The lemurs of Madagascar are among the most threatened mammalian taxa in the world, with habitat loss due to shifting cultivation and timber harvest heavily contributing to their precarious state. Deforestation often leads to fragmentation, resulting in mixed-habitat matrices throughout a landscape where disturbed areas are prone to invasion by exotic plants. Our study site, the Mandena littoral forest (southeast Madagascar), is a matrix of littoral forest, littoral swamp, and Melaleuca swamp habitats. Here, Melaleuca quinquenervia has invaded the wetland ecosystem, creating a mono-dominant habitat that currently provides the only potential habitat corridor between forest fragments. We sought to understand the role of this invasive Melaleuca swamp on the behavioral ecology of a threatened, small-bodied folivore, the southern bamboo lemur (Hapalemur meridionalis). We collected botanical and behavioral data on four groups of H. meridionalis between January and December 2013. Our results confirm Melaleuca swamp as an important part of their home range: while lemurs seasonally limited activities to certain habitats, all groups were capable of utilizing this invasive habitat for feeding and resting. Furthermore, the fact that Hapalemur use an invasive plant species as a dispersal corridor increases our knowledge of their ecological flexibility, and may be useful in the conservation management of remaining threatened populations.