Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Rangasamy, Gautham"
Sort by:
gm/Id $g_m/I_d$Analysis of vertical nanowire III–V TFETs
Experimental data on analog performance of gate‐all‐around III‐V vertical Tunnel Field‐Effect Transistors (TFETs) and circuits are presented. The individual device shows a minimal subthreshold swing of 44 mV/dec and transconductance efficiency of 50 V −1 for current range of 9 nA/μm to 100 nA/μm and at a drain voltage of 100 mV. This TFET demonstrates translinearity between transconductance and drain current for over a decade of current, paving way for low power current‐mode analog IC design. To explore this design principle, a current conveyor circuit is implemented, which exhibits large‐signal voltage gain of 0.89 mV/mV, current gain of 1nA/nA and an operating frequency of 320 kHz. Furthermore, at higher drain bias of 500 mV, the device shows maximum transconductance of 72 μS/μm and maximum drain current of 26 μA/μm. The device, thereby, can be operated as a current mode device at lower bias voltage and as voltage mode device at higher bias voltage.
gm/Id Analysis of vertical nanowire III–V TFETs
Experimental data on analog performance of gate-all-around III-V vertical Tunnel Field-Effect Transistors (TFETs) and circuits are presented. The individual device shows a minimal subthreshold swing of 44 mV/dec and transconductance efficiency of 50 V−1 for current range of 9 nA/μm to 100 nA/μm and at a drain voltage of 100 mV. This TFET demonstrates translinearity between transconductance and drain current for over a decade of current, paving way for low power current-mode analog IC design. To explore this design principle, a current conveyor circuit is implemented, which exhibits large-signal voltage gain of 0.89 mV/mV, current gain of 1nA/nA and an operating frequency of 320 kHz. Furthermore, at higher drain bias of 500 mV, the device shows maximum transconductance of 72 μS/μm and maximum drain current of 26 μA/μm. The device, thereby, can be operated as a current mode device at lower bias voltage and as voltage mode device at higher bias voltage.