Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Ranken, Raymond"
Sort by:
Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry
2007
Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology.
Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999-2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005-2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution.
Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance.
Journal Article
Rapid Identification and Strain-Typing of Respiratory Pathogens for Epidemic Surveillance
by
Robbins, David W.
,
Freed, Nikki
,
Rudnick, Karl
in
Bacteria
,
Bacteria - genetics
,
Base Composition
2005
Epidemic respiratory infections are responsible for extensive morbidity and mortality within both military and civilian populations. We describe a high-throughput method to simultaneously identify and genotype species of bacteria from complex mixtures in respiratory samples. The process uses electrospray ionization mass spectrometry and base composition analysis of PCR amplification products from highly conserved genomic regions to identify and determine the relative quantity of pathogenic bacteria present in the sample. High-resolution genotyping of specific species is achieved by using additional primers targeted to highly variable regions of specific bacterial genomes. This method was used to examine samples taken from military recruits during respiratory disease outbreaks and for follow up surveillance at several military training facilities. Analysis of respiratory samples revealed high concentrations of pathogenic respiratory species, including Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pyogenes. When S. pyogenes was identified in samples from the epidemic site, the identical genotype was found in almost all recruits. This analysis method will provide information fundamental to understanding the polymicrobial nature of explosive epidemics of respiratory disease.
Journal Article
Rapid and High-Throughput pan-Orthopoxvirus Detection and Identification using PCR and Mass Spectrometry
2009
The genus Orthopoxvirus contains several species of related viruses, including the causative agent of smallpox (Variola virus). In addition to smallpox, several other members of the genus are capable of causing human infection, including monkeypox, cowpox, and other zoonotic rodent-borne poxviruses. Therefore, a single assay that can accurately identify all orthopoxviruses could provide a valuable tool for rapid broad orthopovirus identification. We have developed a pan-Orthopoxvirus assay for identification of all members of the genus based on four PCR reactions targeting Orthopoxvirus DNA and RNA helicase and polymerase genes. The amplicons are detected using electrospray ionization-mass spectrometry (PCR/ESI-MS) on the Ibis T5000 system. We demonstrate that the assay can detect and identify a diverse collection of orthopoxviruses, provide sub-species information and characterize viruses from the blood of rabbitpox infected rabbits. The assay is sensitive at the stochastic limit of PCR and detected virus in blood containing approximately six plaque-forming units per milliliter from a rabbitpox virus-infected rabbit.
Journal Article
New technology for rapid molecular diagnosis of bloodstream infections
by
Sampath, Rangarajan
,
Hall, Thomas A
,
Matthews, Heather E
in
Aged
,
antibiotic resistance
,
Bacteremia - diagnosis
2010
Technologies for the correct and timely diagnosis of bloodstream infections are urgently needed. Molecular diagnostic methods have yet to have a major impact on the diagnosis of bloodstream infections; however, new methods are being developed that are beginning to address key issues. In this article, we discuss the key needs and objectives of molecular diagnostics for bloodstream infections and review some of the currently available methods and how these techniques meet key needs. We then focus on a new method that combines nucleic acid amplification with mass spectrometry in a novel approach to molecular diagnosis of bloodstream infections.
Journal Article