Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
211 result(s) for "Ranta, E"
Sort by:
Magmatic Controls on Volcanic Sulfur Emissions at the Iceland Hotspot
Outgassing of sulfur (as SO2) is one of the principal hazards posed by volcanic eruptions. However, S emission potentials of most volcanoes globally are poorly constrained due to a short observational record and an incomplete understanding of the magmatic processes that influence pre‐eruptive S concentrations. Here, we use a compilation of published and new data from melt inclusions (MIs)—which can preserve magmatic S concentrations prior to eruptive degassing—from the Iceland hotspot to evaluate the effects of mantle melting and crustal magmatic processes on the S budgets of Icelandic melts. We use MI data to estimate S emission potentials (ΔSmax, in ppm S) for 73 eruptions from 22 of Iceland's presently active ∼33 volcanic systems. We show that the S systematics of Icelandic melts are strongly regulated by the sulfide solubility limit. Sulfide‐saturated conditions during lower‐degree mantle melting, prevalent at off‐rift zones, likely explains observed decoupling between S and Cl. During magmatic differentiation, a local maximum in modeled sulfide solubility occurs in evolved basalts (4–6 wt.% MgO), coinciding with highest MI S concentrations. Highest ΔSmax values (2,100–2,600 ppm) are found in the Hekla 1913 CE, Eldgjá 939 CE, and Surtsey 1963–1967 CE eruptions in the South Iceland Volcanic Zone. Our results extend the record of volcanic sulfur emissions back in time and can be used to assess volcanic gas hazards at Icelandic volcanoes where no direct measurements are available. Broadly, the results underline the governing role of sulfide saturation during melting and magma differentiation in controlling the eruptible S contents of Icelandic magmas. Key Points Maximum eruptible S contents (ppm S) are estimated for 73 Icelandic eruptions based on melt inclusion data Pre‐eruptive S contents are mostly controlled by sulfide saturation during both melting and crustal magmatic differentiation Icelandic basalts often erupt at compositions close to a compositional maximum in sulfide solubility, leading to relatively high S emissions
The Petrology and Geochemistry of the 2021 Fagradalsfjall Eruption, Iceland: An Eruption Sourced From Multiple, Compositionally Diverse, Near‐Moho Sills
Magmatic processes at the crust‐mantle boundary (i.e., Moho) are commonly studied post facto at fossil ophiolites, oceanic core complexes, or inferred from the compositions of crystals or melt inclusions. The 2021 eruption at Fagradalsfjall on the Reykjanes Peninsula, Iceland, was supplied from magma bodies near the Moho and offers a unique opportunity to study the timescales, structure, and syn‐eruptive processes of near‐Moho magmatic systems at ∼15 km depth. Here, we present a comprehensive petrological and geochemical investigation of the full 183 day eruption that is based on frequent sampling of the eruption. Lavas erupted in the first 45 days displayed significant and sudden changes in geochemistry, followed by lower amplitude fluctuations until the end of the eruption. This variability can be explained by contribution from multiple magma bodies, as best distinguished using Sr‐Nd‐Hf‐Pb isotope systematics. The lavas display unusual trace element and radiogenic isotope compositions compared to other Icelandic basalts, but are similar to other rare, highly incompatible element enriched lavas on the Reykjanes Peninsula, and thus these lavas may represent a distinct suite of Reykjanes Peninsula basalts. Our geochemical and petrological observations show that numerous, compositionally variable bodies of magma must exist in the lowermost crust or at the crust‐mantle boundary. These near‐Moho magma bodies transfer magma between one another on timescales as short as days‐to‐months, but partially crystallize over longer time periods, and periodically inject into the overlying crust. Plain Language Summary The 2021 Fagradalsfjall eruption is the first on Iceland's Reykjanes Peninsula in ∼800 years and likely is the harbinger of a renewed period of volcanism on the peninsula, as evidenced by subsequent eruptions at Fagradalsfjall and Svartsengi. For evaluating the potential hazard of the new eruptive period, we must understand how these new volcanic systems work. Here, we investigate the chemical and mineralogical properties of the 2021 Fagradalsfjall lava in order to identify the structure, igneous processes, and origins of the magmas feeding the new eruptions. We find that the 2021 eruption lavas have highly unusual compositions compared to most Icelandic basaltic eruptions and are sourced deeper, from magma bodies at the bottom of the crust. In contrast to the rather homogeneous chemical compositions of most basaltic eruptions, the compositions of the 2021 Fagradalsfjall lavas are extremely variable. This is explained by the lava being fed from multiple independent magma bodies close to the crust‐mantle boundary. The 2021 Fagradalsfjall eruption is the first that allows direct investigation of a “living” magma system hosted near the crust‐mantle boundary. The Fagradalsfjall deep magma system is characterized by many, compositionally diverse, magma bodies that exchange magma with one another on days‐to‐weeks timescales and occasionally intrude into the overlying crust. Key Points We use high frequency sampling to observe rapid changes in lava composition during the 183 day 2021 Fagradalsfjall eruption The eruption was sourced from 12 to 15 km depth, corresponding to the lowermost crust and the crust‐mantle boundary Lavas show broad compositional variability over short time periods, requiring input from multiple compositionally distinct magma bodies
Fluid–rock reactions in the 1.3 Ga siderite carbonatite of the Grønnedal–Íka alkaline complex, Southwest Greenland
Petrogenetic studies of carbonatites are challenging, because carbonatite mineral assemblages and mineral chemistry typically reflect both variable pressure–temperature conditions during crystallization and fluid–rock interaction caused by magmatic–hydrothermal fluids. However, this complexity results in recognizable alteration textures and trace-element signatures in the mineral archive that can be used to reconstruct the magmatic evolution and fluid–rock interaction history of carbonatites. We present new LA–ICP–MS trace-element data for magnetite, calcite, siderite, and ankerite–dolomite–kutnohorite from the iron-rich carbonatites of the 1.3 Ga Grønnedal–Íka alkaline complex, Southwest Greenland. We use these data, in combination with detailed cathodoluminescence imaging, to identify magmatic and secondary geochemical fingerprints preserved in these minerals. The chemical and textural gradients show that a 55 m-thick basaltic dike that crosscuts the carbonatite intrusion has acted as the pathway for hydrothermal fluids enriched in F and CO2, which have caused mobilization of the LREEs, Nb, Ta, Ba, Sr, Mn, and P. These fluids reacted with and altered the composition of the surrounding carbonatites up to a distance of 40 m from the dike contact and caused formation of magnetite through oxidation of siderite. Our results can be used for discrimination between primary magmatic minerals and later alteration-related assemblages in carbonatites in general, which can lead to a better understanding of how these rare rocks are formed. Our data provide evidence that siderite-bearing ferrocarbonatites can form during late stages of calciocarbonatitic magma evolution.
Synchronous dynamics and rates of extinction in spatially structured populations
We explore extinction rates using a spatially arranged set of subpopulations obeying Ricker dynamics. The population system is subjected to dispersal of individuals among the subpopulations as well as to local and global disturbances. We observe a tight positive correlation between global extinction rate and the level of synchrony in dynamics among thesubpopulations. Global disturbances and to a lesser extent, migration, are capable of synchronizing the temporal dynamics of the subpopulations over a rather wide span of the population growth rate r: Local noise decreases synchrony, as does increasing distance among the subpopulations. Synchrony also levels off with increasing r: in the chaotic region, subpopulations almost invariably behave asynchronously. We conclude that it is asynchrony that reduces the probability of global extinctions, not chaos as such: chaos is a special case only. The relationship between global extinction rate, synchronous dynamics and population growth rate is robust to changes in dispersal rates and ranges.
Synchrony in Population Dynamics
Our data are long-term population dynamics of a set of species in different localities in Finland. There is considerable level of species-specific synchrony in population fluctuations among the localities. The degree of synchrony levels off with increasing distance among the populations compared. Climatic perturbations and dispersal have been proposed as pace-making factors for synchrony. According to Moran’s theorem, local populations sharing a common structure of density dependence should become synchronized under the influence of a spatially correlated density-independent factor. This predicts synchrony to decay slower with increasing distance between local populations than if the synchrony is caused by dispersal. To explore the significance of the Moran effect and dispersal in explaining the observed regional synchrony, we used a metapopulation system. The Moran effect and dispersal are both capable to synchronize alone local population fluctuations. However, with dispersal the level of synchrony decreases with distance among the populations. Adding Moran’s effect does not greatly affect the level of synchrony, nor the negative correlation between synchrony and distance. This finding makes it difficult to tell apart whether an observed negative correlation between the level of synchrony and distance among the compared populations is caused by dispersal alone, or both dispersal and Moran’s effect acting together.
Spatially autocorrelated disturbances and patterns in population synchrony
Spatially synchronous population dynamics have been documented in many taxa. The prevailing view is that the most plausible candidates to explain this pattern are extrinsic disturbances (the Moran effect) and dispersal. In most cases disentangling these factors is difficult. Theoretical studies have shown that dispersal between subpopulations is more likely to produce a negative relationship between population synchrony and distance between the patches than perturbations. As analyses of empirical data frequently show this negative relationship between the level of synchrony and distance between populations, this has emphasized the importance of dispersal as a synchronizing agent. However, several weather patterns show spatial autocorrelation, which could potentially produce patterns in population synchrony similar to those caused by dispersal. By using spatially extended versions of several population dynamic models, we show that this is indeed the case. Our results show that, especially when both factors (spatially autocorrelated perturbations and distance-dependent dispersal) act together, there may exist groups of local populations in synchrony together but fluctuating asynchronously with some other groups of local populations. We also show, by analysing 56 long-term population data sets, that patterns of population synchrony similar to those found in our simulations are found in natural populations as well. This finding highlights the subtlety in the interactions of dispersal and noise in organizing spatial patterns in population fluctuations.
Travelling waves in vole population dynamics
Spatial self-organization patterns in population dynamics have been anticipated 1 , 2 , 3 , but demonstrating their existence requires sampling over long periods of time at a range of sites. Voles cause severe economic damage and are therefore extensively monitored, providing a source of the required data. Using two long-term data sets 4 , 5 , 6 we now report the existence of travelling waves in vole population numbers.
Comprehensive Examination of Frontal Regions in Boys and Girls with Attention-Deficit/Hyperactivity Disorder
The current study examined regional frontal lobe volumes based on functionally relevant subdivisions in contemporaneously recruited samples of boys and girls with and without attention-deficit/hyperactivity disorder (ADHD). Forty-four boys (21 ADHD, 23 control) and 42 girls (21 ADHD, 21 control), ages 8–13 years, participated. Sulcal–gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: primary motor cortex, anterior cingulate, deep white matter, premotor regions [supplementary motor complex (SMC), frontal eye field, lateral premotor cortex (LPM)], and prefrontal cortex (PFC) regions [medial PFC, dorsolateral PFC (DLPFC), inferior PFC, lateral orbitofrontal cortex (OFC), and medial OFC]. Compared to sex-matched controls, boys and girls with ADHD showed reduced volumes (gray and white matter) in the left SMC. Conversely, girls (but not boys) with ADHD showed reduced gray matter volume in left LPM; while boys (but not girls) with ADHD showed reduced white matter volume in left medial PFC. Reduced left SMC gray matter volumes predicted increased go/no–go commission rate in children with ADHD. Reduced left LPM gray matter volumes predicted increased go/no–go variability, but only among girls with ADHD. Results highlight different patterns of anomalous frontal lobe development among boys and girls with ADHD beyond that detected by measuring whole lobar volumes. (JINS, 2011, 17, 1047–1057)
Is the impact of environmental noise visible in the dynamics of age-structured populations?
Climate change has ignited lively research into its impact on various population-level processes. The research agenda in ecology says that some of the fluctuations in population size are accountable for by the external noise (e.g. weather) modulating the dynamics of populations. We obeyed the agenda by assuming population growth after a resource-limited Leslie matrix model in an age-structured population. The renewal process was disturbed by superimposing noise on the development of numbers in one or several age groups. We constructed models for iteroparous and semelparous breeders so that, for both categories, the population growth rate was matching. We analysed how the modulated population dynamics correlates with the noise signal with different time-lags. No significant correlations were observed for semelparous breeders, whereas for iteroparous breeders high correlations were frequently observed with time-lags of −1 year or longer. However, the latter occurs under red-coloured noise and for low growth rates when the disturbance is on the youngest age group only. It is laborious to find any clear signs of the (red) noise- and age group-specific fluctuations if the disturbance influences older age groups only. These results cast doubts on the possibility of detecting the signature of external disturbance after it has modulated temporal fluctuations in age-structured populations.
Environmental Fluctuations and Level of Density-Compensation Strongly Affects the Probability of Fixation and Fixation Times
The probability of, and time to, fixation of a mutation in a population has traditionally been studied by the classic Wright–Fisher model where population size is constant. Recent theoretical expansions have covered fluctuating populations in various ways but have not incorporated models of how the environment fluctuates in combination with different levels of density-compensation affecting fecundity. We tested the hypothesis that the probability of, and time to, fixation of neutral, advantageous and deleterious mutations is dependent on how the environment fluctuates over time, and on the level of density-compensation. We found that fixation probabilities and times were dependent on the pattern of autocorrelation of carrying capacity over time and interacted with density-compensation. The pattern found was most pronounced at small population sizes. The patterns differed greatly depending on whether the mutation was neutral, advantageous, or disadvantageous. The results indicate that the degree of mismatch between carrying capacity and population size is a key factor, rather than population size per se, and that effective population sizes can be very low also when the census population size is far above the carrying capacity. This study highlights the need for explicit population dynamic models and models for environmental fluctuations for the understanding of the dynamics of genes in populations.