Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Rao, Runlong"
Sort by:
On-chip nonlocal metasurface for color router: conquering efficiency-loss from spatial-multiplexing
by
Shi, Yangyang
,
Wan, Shuai
,
Wang, Zejing
in
639/624/399/1015
,
639/624/400/1103
,
639/766/400/1021
2026
Metasurfaces integrated onto guided-wave photonic systems have been investigated for enabling advanced functionalities such as point-by-point optical extraction and manipulation of amplitude, phase, and polarization. However, achieving full control over the spectrum (i.e., wavelength/frequency) of on-chip light remains a challenge, limiting their widespread application in integrated photonics. Here, we propose and experimentally demonstrate an on-chip metasurface color router by leveraging symmetry-broken quasi-bound states in the continuum (q-BICs) mode. By precisely engineering the on-chip meta-diatom pairs with controlled scaling and asymmetry, we simultaneously achieve modulation of both extraction intensity and narrowband spectral extraction of the out-coupled lightwave. As a proof of concept, we realize several on-chip multiplexed color routers through spatial mapping and cascading of distinct q-BIC-assisted meta-diatom pixels, capable of selectively guiding and routing primary wavelengths into free space from different spatial positions along the waveguide. Crucially, due to the on-chip optical propagation scheme, these color routers, enabled by nonlocal metasurfaces, exhibit spatial multiplexing but with a significant improvement in the energy utilization efficiency (EUE) compared with conventional designs. We envision that such on-chip q-BIC-assisted metasurface color routers, with their potential for miniaturized integration, could open new avenues for advanced applications in multiplexed information routing, intelligent integrated photonic systems, and next-generation wearable display technologies.
Journal Article
Deep Integration Between Polarimetric Forward-Transmission Fiber-Optic Communication and Distributed Sensing Systems
2024
The structural health of fiber-optic communication networks has become increasingly important due to their widespread deployment and reliance in interconnected cities. We demonstrate a smart upgrade of a communication system employing a dual-polarization-state polarization shift keying (2-PolSK) modulation format to enable distributed vibration monitoring. Sensing can be conducted without hardware changes or occupying additional communication bandwidth. Experimental results demonstrate that forward transmission-based distributed vibration sensing can coexist with PolSK data transmission without significant deterioration in performance. This proof-of-concept study achieved a sensitivity of 0.4141 μV/με with a limit of detection (LoD) of 563 pε/Hz1/2@100 Hz. The single-span sensing distance can reach up to 121 km (no optical amplification) with a positioning accuracy as small as 874 m. The transmission rate is 300 Mb/s, the QdB is 16.78 dB, and the corresponding BER is 5.202 × 10−12. For demonstration purposes, the tested vibration frequency range is between 100 and 200 Hz.
Journal Article
Deep Integration of Fiber-Optic Communication and Sensing Systems Using Forward-Transmission Distributed Vibration Sensing and on–off Keying
by
Dai, Shangwei
,
Liu, Hanjie
,
Zhu, Runlong
in
Bandwidths
,
Communication
,
communication–sensing integration
2024
The deep integration of communication and sensing technology in fiber-optic systems has been highly sought after in recent years, with the aim of rapid and cost-effective large-scale upgrading of existing communication cables in order to monitor ocean activities. As a proof-of-concept demonstration, a high-degree of compatibility was shown between forward-transmission distributed fiber-optic vibration sensing and an on–off keying (OOK)-based communication system. This type of deep integration allows distributed sensing to utilize the optical fiber communication cable, wavelength channel, optical signal and demodulation receiver. The addition of distributed sensing functionality does not have an impact on the communication performance, as sensing involves no hardware changes and does not occupy any bandwidth; instead, it non-intrusively analyzes inherent vibration-induced noise in the data transmitted. Likewise, the transmission of communication data does not affect the sensing performance. For data transmission, 150 Mb/s was demonstrated with a BER of 2.8 × 10−7 and a QdB of 14.1. For vibration sensing, the forward-transmission method offers distance, time, frequency, intensity and phase-resolved monitoring. The limit of detection (LoD) is 8.3 pε/Hz1/2 at 1 kHz. The single-span sensing distance is 101.3 km (no optical amplification), with a spatial resolution of 0.08 m, and positioning accuracy can be as low as 10.1 m. No data averaging was performed during signal processing. The vibration frequency range tested is 10–1000 Hz.
Journal Article