Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "Raposo, Ernesto P."
Sort by:
The evolutionary origins of Lévy walk foraging
We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher's information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolutionary origins of animal foraging. The inherent character of the optimal solution (i.e., independent on the landscape for the broad scenarios assumed here) suggests an interpretation favoring the evolutionary view, as originally implied by the Lévy flight foraging hypothesis. The latter states that, under conditions of scarcity of information and sparse resources, some organisms must have evolved to exploit optimal strategies characterized by heavy-tailed truncated power-law distributions of move lengths. These results strongly suggest that Lévy strategies-and hence the selection pressure for the relevant adaptations-are robust with respect to large changes in habitat. In contrast, the usual emergentist explanation seems not able to explain how very similar Lévy walks can emerge from all the distinct non-Lévy foraging strategies that are needed for the observed large variety of specific environments. We also report that deviations from Lévy can take place in plentiful ecosystems, where locomotion truncation is very frequent due to high encounter rates. So, in this case normal diffusion strategies-performing as effectively as the optimal one-can naturally emerge from Lévy. Our results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks.
Stochastic Optimal Foraging: Tuning Intensive and Extensive Dynamics in Random Searches
Recent theoretical developments had laid down the proper mathematical means to understand how the structural complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion) with a minimal diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios. We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence, the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant) to cope with the very general problem of balancing out intensive and extensive random searching. We believe that theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are crucial to develop an empirically verifiable and comprehensive animal foraging theory.
Observation of the photonic Hall effect and photonic magnetoresistance in random lasers
Modulation of scattering in random lasers (RLs) by magnetic fields has attracted much attention due to its rich physical insights. We fabricate magnetic gain polymer optical fiber to generate RLs. From macroscopic experimental phenomena, with the increase of the magnetic field strength, the magnetic transverse photocurrent exists in disordered multiple scattering of RLs and the emission intensity of RLs decreases, which is the experimental observation of photonic Hall effect (PHE) and photonic magnetoresistance (PMR) in RLs. At the microscopic level, based on the field dependence theory of magnetic disorder in scattered nanoparticles and the replica symmetry breaking theory, the magnetic-induced transverse diffusion of photons reduces the scattering disorder, and then decreases the intensity fluctuation disorder of RLs. Our work establishes a connection between the above two effects and RLs, visualizes the influence of magnetic field on RL scattering at the microscopic level, which is crucial for the design of RLs. This work reveals the presence of the photonic Hall effect and photonic magnetoresistance in a field-dependent random laser. This observation visualizes the influence of magnetic field on random lasers scattering at the microscopic level.
Plasmodium sporozoite search strategy to locate hotspots of blood vessel invasion
Plasmodium sporozoites actively migrate in the dermis and enter blood vessels to infect the liver. Despite their importance for malaria infection, little is known about these cutaneous processes. We combine intravital imaging in a rodent malaria model and statistical methods to unveil the parasite strategy to reach the bloodstream. We determine that sporozoites display a high-motility mode with a superdiffusive Lévy-like pattern known to optimize the location of scarce targets. When encountering blood vessels, sporozoites frequently switch to a subdiffusive low-motility behavior associated with probing for intravasation hotspots, marked by the presence of pericytes. Hence, sporozoites present anomalous diffusive motility, alternating between superdiffusive tissue exploration and subdiffusive local vessel exploitation, thus optimizing the sequential tasks of seeking blood vessels and pericyte-associated sites of privileged intravasation. Plasmodium sporozoites actively migrate in the dermis and enter blood vessels to induce infection. Here, Formaglio et al. show that Plasmodium sporozoites alternate global superdiffusive skin exploration and local subdiffusive blood vessel exploitation to find intravasation hotspots associated with pericytes, enter the blood circulation and start malaria infection.
Replica symmetry breaking in 1D Rayleigh scattering system: theory and validations
Spin glass theory, as a paradigm for describing disordered magnetic systems, constitutes a prominent subject of study within statistical physics. Replica symmetry breaking (RSB), as one of the pivotal concepts for the understanding of spin glass theory, means that under identical conditions, disordered systems can yield distinct states with nontrivial correlations. Random fiber laser (RFL) based on Rayleigh scattering (RS) is a complex disordered system, owing to the disorder and stochasticity of RS. In this work, for the first time, a precise theoretical model is elaborated for studying the photonic phase transition via the platform of RS-based RFL, in which we clearly reveal that, apart from the pump power, the photon phase variation in RFL is also an analogy to the temperature term in spin-glass phase transition, leading to a novel insight into the intrinsic mechanisms of photonic phase transition. In addition, based on this model and real-time high-fidelity detection spectral evolution, we theoretically predict and experimentally observe the mode-asymmetric characteristics of photonic phase transition in RS-based RFL. This finding contributes to a deeper understanding of the photonic RSB regime and the dynamics of RS-based RFL.This work reveals intrinsic mechanisms of photonic phase transitions with a precise theoretical model in 1D Rayleigh scattering system, and could have broad and profound impacts across various complex systems.
Turbulence hierarchy in a random fibre laser
Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov’s theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform. Random fibre lasers constitute a class of lasers where the optical feedback is provided by multiple scattering in a disordered system. Here, González et al . theoretically and experimentally study the statistical turbulence behaviour in relation to the lasing transition in such lasers.
What Does It Take to Solve the 3D Ising Model? Minimal Necessary Conditions for a Valid Solution
An exact solution of the Ising model on the simple cubic lattice is one of the long-standing open problems in rigorous statistical mechanics. Indeed, it is generally believed that settling it would constitute a methodological breakthrough, fomenting great prospects for further application, similarly to what happened when Lars Onsager solved the two-dimensional model eighty years ago. Hence, there have been many attempts to find analytic expressions for the exact partition function Z, but all such attempts have failed due to unavoidable conceptual or mathematical obstructions. Given the importance of this simple yet paradigmatic model, here we set out clear-cut criteria for any claimed exact expression for Z to be minimally plausible. Specifically, we present six necessary—but not sufficient—conditions that Z must satisfy. These criteria will allow very quick plausibility checks of future claims. As illustrative examples, we discuss previous mistaken “solutions”, unveiling their shortcomings.
Random Search Walks Inside Absorbing Annuli
We revisit the problem of random search walks in the two-dimensional (2D) space between concentric absorbing annuli, in which a searcher performs random steps until finding either the inner or the outer ring. By considering step lengths drawn from a power-law distribution, we obtain the exact analytical result for the search efficiency η in the ballistic limit, as well as an approximate expression for η in the regime of searches starting far away from both rings, and the scaling behavior of η for very small initial distances to the inner ring. Our numerical results show good overall agreement with the theoretical findings. We also analyze numerically the absorbing probabilities related to the encounter of the inner and outer rings and the associated Shannon entropy. The power-law exponent marking the crossing of such probabilities (equiprobability) and the maximum entropy condition grows logarithmically with the starting distance. Random search walks inside absorbing annuli are relevant, since they represent a mean-field approach to conventional random searches in 2D, which is still an open problem with important applications in various fields.
Simultaneous evaluation of intermittency effects, replica symmetry breaking and modes dynamics correlations in a Nd:YAG random laser
Random lasers (RLs) are remarkable experimental platforms to advance the understanding of complex systems phenomena, such as the replica-symmetry-breaking (RSB) spin glass phase, dynamics modes correlations, and turbulence. Here we study these three phenomena jointly in a Nd:YAG based RL synthesized for the first time using a spray pyrolysis method. We propose a couple of modified Pearson correlation coefficients that are simultaneously sensitive to the emergence and fading out of photonic intermittency turbulent-like effects, dynamics evolution of modes correlations, and onset of RSB behavior. Our results show how intertwined these phenomena are in RLs, and suggest that they might share some common underlying mechanisms, possibly approached in future theoretical models under a unified treatment.
Replica symmetry breaking in the aperiodic pulsating regime of a passive mode-locked ultrafast fiber laser
While replica symmetry breaking (RSB) was originally formulated in spin-glass theory, its photonic counterpart has been realized in the last decade. The existence of a photonic glassy RSB regime has been demonstrated in several photonic platforms characterised by high disorder, such as colloidal random lasers and random fiber lasers. However, the emergence of RSB phase with weak disorder in a standard passive mode-locking regime has not been experimentally demonstrated. Here, we report such experimental demonstration in an ultrafast fiber laser. In contrast to the photonic glassy-like RSB phase in random lasers, the intensity fluctuations of the optical modes in the pulsating passive mode-locking regime originate from the interplay of the nonlinearity and competition of gain among modes, leading to different sets of activated and frustrated modes associated with each pulse. We study the underlying mechanism by characterizing the phase stability of pulses in the mode-locking regimes, demonstrating phase stability in the stable mode-locking regime, periodic oscillation in the pulsating mode locking regime with periodic pulses, and chaotic evolution in the aperiodic pulsating regime. We interpret the latter as an unobserved RSB regime in the aperiodic pulsating phase of passive mode-locked ultrafast lasers. Originally developed in spin-glass physics, replica symmetry breaking (RSB) has recently found a photonic counterpart in disordered laser systems. The study reports the first experimental observation of replica symmetry breaking (RSB) in the aperiodic pulsating regime of a standard passive mode-locked ultrafast fiber laser.