Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Rasheed, Akhter"
Sort by:
Sharp Results for a New Class of Analytic Functions Associated with the q-Differential Operator and the Symmetric Balloon-Shaped Domain
In our current study, we apply differential subordination and quantum calculus to introduce and investigate a new class of analytic functions associated with the q-differential operator and the symmetric balloon-shaped domain. We obtain sharp results concerning the Maclaurin coefficients the second and third-order Hankel determinants, the Zalcman conjecture, and its generalized conjecture for this newly defined class of q-starlike functions with respect to symmetric points.
A Study on q-Starlike Functions Connected with q-Extension of Hyperbolic Secant and Janowski Functions
This study introduces a novel subclass of q-starlike functions that is defined by the application of the q-difference operator and q-analogue of hyperbolic secant function. By making certain variations to the parameter “q”, the geometric interpretation of the domain hyperbolic secant function has also been discussed. The primary objective is to investigate and establish key results on the differential subordination of various orders within this newly defined class. Furthermore, convolution properties are explored and coefficient bounds are derived for these functions. A deeper analysis of these coefficients bounds unveils intriguing geometric insights and significant mathematical problems.
Sharp Coefficient and Hankel Problems Related to a Symmetric Domain
In the current article, we utilize the concept of subordination to establish a new subclass of analytic functions associated with a bounded domain that is symmetric about the real axis. By applying the convolution technique, we derive the necessary and sufficient condition, the radius of convexity for this recently introduced class. Furthermore, we prove the sharp upper bounds for the second-order Hankel determinants |H2,1ξ|,|H2,2ξ| and third-order Hankel determinant |H3,1ξ| for the functions ξ belonging to the newly defined class.
Dynamic Analysis of a 10-Dimensional Fractional-Order Hyperchaotic System Using Advanced Hyperchaotic Metrics
In this paper, we propose an innovative approach to fractional-order dynamics by introducing a 10-dimensional (10D) chaotic system that leverages the intrinsic memory characteristic of the Grünwald–Letnikov (G-L) derivative. We utilize Lyapunov exponents as a quantitative measure to characterize hyperchaotic behavior, and classify the nature of the suggested 10D fractional-order system (FOS). While several methods exist for calculating Lyapunov exponents (LEs) through the utilization of integer-order systems, these approaches are not applicable for FOS due to its non-local nature. Initially, the system dynamics are thoroughly examined through Lyapunov exponents and bifurcation analysis, considering the influence of both state variables and fractional orders. To assess the hyperchaotic behavior of the proposed model, sensitivity analyses are conducted by exploring changes in state variables under two distinct initial conditions, along with time history simulations for various parameter settings. Furthermore, we examine the impact of different fractional-order sets on the system’s dynamics. A comprehensive performance comparison is conducted between the proposed 10-dimensional fractional-order hyperchaotic system and several existing hyperchaotic systems. This comparison utilizes advanced metrics, including the Kolmogorov–Sinai (KS) entropy, Kaplan–Yorke dimension, the Perron effect analysis, and the 0-1 test for chaos. Simulation outcomes reveal that the proposed system surpasses existing algorithms, delivering improved precision and accuracy.
A Subclass of q-Starlike Functions Defined by Using a Symmetric q-Derivative Operator and Related with Generalized Symmetric Conic Domains
In this paper, the concepts of symmetric q-calculus and conic regions are used to define a new domain Ωk,q,α˜, which generalizes the symmetric conic domains. By using the domain Ωk,q,α˜, we define a new subclass of analytic and q-starlike functions in the open unit disk U and establish some new results for functions of this class. We also investigate a number of useful properties and characteristics of this subclass, such as coefficients estimates, structural formulas, distortion inequalities, necessary and sufficient conditions, closure and subordination results. The proposed approach is also compared with some existing methods to show the reliability and effectiveness of the proposed methods.
Applications of a q-Integral Operator to a Certain Class of Analytic Functions Associated with a Symmetric Domain
In this article, our objective is to define and study a new subclass of analytic functions associated with the q-analogue of the sine function, operating in conjunction with a convolution operator. By manipulating the parameter q, we observe that the image of the unit disc under the q-sine function exhibits a visually appealing resemblance to a figure-eight shape that is symmetric about the real axis. Additionally, we investigate some important geometrical problems like necessary and sufficient conditions, coefficient bounds, Fekete-Szegö inequality, and partial sum results for the functions belonging to this newly defined subclass.
Analytic Functions Related to a Balloon-Shaped Domain
One of the fundamental parts of Geometric Function Theory is the study of analytic functions in different domains with critical geometrical interpretations. This article defines a new generalized domain obtained based on the quotient of two analytic functions. We derive various properties of the new class of normalized analytic functions X defined in the new domain, including the sharp estimates for the coefficients a2,a3, and a4, and for three second-order and third-order Hankel determinants, H2,1X,H2,2X, and H3,1X. The optimality of each obtained estimate is given as well.
Analytic Functions Related with Starlikeness
The aim of present investigation is to study a new class of analytic function related with the Sokol-Nunokawa class. We derived relationships of this class with strongly starlike functions and obtained many interesting results.
Application of Quasisubordination to Certain Classes of Meromorphic Functions
Inequalities play a fundamental role in many branches of mathematics and particularly in real analysis. By using inequalities, we can find extrema, point of inflection, and monotonic behavior of real functions. Subordination and quasisubordination are important tools used in complex analysis as an alternate of inequalities. In this article, we introduce and systematically study certain new classes of meromorphic functions using quasisubordination and Bessel function. We explore various inequalities related with the famous Fekete-Szego inequality. We also point out a number of important corollaries.