Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
119 result(s) for "Rasmann, Sergio"
Sort by:
Elevational gradients in plant defences and insect herbivory
Classic research on elevational gradients in plant–herbivore interactions holds that insect herbivore pressure is stronger under warmer, less seasonal climates characteristic of low elevations, and that this in turn selects for increased defence in low- (relative to high-) elevation plants. However, recent work has questioned this paradigm, arguing that it overly simplifies the ecological complexity in which plant–insect herbivore interactions are embedded along elevational gradients. Numerous biotic and abiotic factors vary with elevation, and their simultaneous influences are the focus of current work on elevational gradients in insect herbivory and plant defences. The present review 1) synthesizes current knowledge on elevational gradients in plant–insect herbivore interactions; 2) critically analyses research gaps and highlights recent advances that contribute to filling these gaps; and 3) outlines new research opportunities to uncover underlying mechanisms and build towards a unified theory on elevational gradients. We conclude that the next generation of studies should embrace community complexity – including multi-trophic dynamics and the multivariate nature of plant defence – and to do so by combining observational data, manipulative experiments and emerging analytical tools.
Variation in Below-to Aboveground Systemic Induction of Glucosinolates Mediates Plant Fitness Consequences under Herbivore Attack
Plants defend themselves against herbivore attack by constitutively producing toxic secondary metabolites, as well as by inducing them in response to herbivore feeding. Induction of secondary metabolites can cross plant tissue boundaries, such as from root to shoot. However, whether the potential for plants to systemically induce secondary metabolites from roots to shoots shows genetic variability, and thus, potentially, is under selection conferring fitness benefits to the plants is an open question. To address this question, we induced 26 maternal plant families of the wild species Cardamine hirsuta belowground (BG) using the wound-mimicking phytohormone jasmonic acid (JA). We measured resistance against a generalist (Spodoptera littoralis) and a specialist (Pieris brassicae) herbivore species, as well as the production of glucosinolates (GSLs) in plants. We showed that BG induction increased AG resistance against the generalist but not against the specialist, and found substantial plant family-level variation for resistance and GSL induction. We further found that the systemic induction of several GSLs tempered the negative effects of herbivory on total seed set production. Using a widespread natural system, we thus confirm that BG to AG induction has a strong genetic component, and can be under positive selection by increasing plant fitness. We suggest that natural variation in systemic induction is in part dictated by allocation trade-offs between constitutive and inducible GSL production, as well as natural variation in AG and BG herbivore attack in nature.
Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions
Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na+/K+-ATPase, most insects that feed on cardenolidecontaining plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Latitudinal variation in plant chemical defences drives latitudinal patterns of leaf herbivory
A long-standing paradigm in ecology holds that herbivore pressure and thus plant defences increase towards lower latitudes. However, recent work has challenged this prediction where studies have found no relationship or opposite trends where herbivory or plant defences increase at higher latitudes. Here we tested for latitudinal variation in herbivory, chemical defences (phenolic compounds), and nutritional traits (phosphorus and nitrogen) in leaves of a long-lived tree species, the English oak Quercus robur. We further investigated the underlying climatic and soil factors associated with such variation. Across 38 populations of Q. robur distributed along an 18 degrees latitudinal gradient, covering almost the entire latitudinal and climatic range of this species, we observed strong but divergent latitudinal gradients in leaf herbivory and leaf chemical defences and nutrients. As expected, there was a negative relationship between latitude and leaf herbivory where oak populations from lower latitudes exhibited higher levels of leaf herbivory. However, counter to predictions there was a positive relationship between leaf chemical defences and latitude where populations at higher latitudes were better defended. Similarly, leaf phosphorus and nitrogen increased with latitude. Path analysis indicated a significant (negative) effect of plant chemical defences (condensed tannins) on leaf herbivory, suggesting that the latitudinal gradient in leaf herbivory was driven by an inverse gradient in defensive investment. Leaf nutrients had no independent influence on herbivory. Further, we found significant indirect effects of precipitation and soil porosity on leaf herbivory, which were mediated by plant chemical defences. These findings suggest that abiotic factors shape latitudinal variation in plant defences and that these defences in turn underlie latitudinal variation in leaf herbivory. Overall, this study contributes to a better understanding of latitudinal variation in plant-herbivore interactions by determining the identity and modus operandi of abiotic factors concurrently shaping plant defences and herbivory.
The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges
Soil nematodes are a foremost component of terrestrial biodiversity; they display a whole gamut of trophic guilds and life strategies, and by their activity, affect major ecosystem process, such as organic matter degradation and carbon cycling. Based on nematodes' functional types, nematode community indices have been developed, and can be used to link variation in nematodes community composition and ecosystem processes. Yet, the use of these indices has been mainly restricted to anthropogenic stresses. In this study, we propose to expand the use of nematodes' derived ecological indices to link soil and climate properties with soil food webs, and ecosystem processes that all vary along steep elevation gradients. For this purpose, we explored how elevation affects the trophic and functional diversity of nematode communities sampled every 300 m, from about 1,000 m to 3,700 m above sea level, across four transects in the lesser Himalayan range of Jammu and Kashmir. We found that (a) the trophic and functional diversity of nematodes increases with elevation; (b) differences in nematodes communities generate habitat‐specific functional diversity; (c) the maturity index (ΣMI) increases with elevation, while the enrichment index decreases, indicating less mature and less productive ecosystems, enhanced fungal‐based energy flow, and a predominant role of nematodes in generating carbon influxes at high‐elevation sites. We thus confirm that the functional contribution of soil nematodes to belowground ecosystem processes, including carbon and energy flow, is stronger at high elevation. Overall, this study highlights the central importance of nematodes in sustaining soil ecosystems and brings insights into their functional role, particularly in alpine and arctic soils. Soil nematodes trophic and functional diversity increases with elevation. Therefore, soil nematodes in alpine and arctic soil contribute mostly to ecosystem functioning.
High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature?
Traits that mediate species interactions are evolutionarily shaped by biotic and abiotic drivers, yet we know relatively little about the relative importance of these factors. Herbivore pressure, along with resource availability and ‘third‐party’ mutualists, are hypothesized to play a major role in the evolution of plant defence traits. Here, we used the model system Plantago lanceolata, which grows along steep elevation gradients in the Swiss Alps, to investigate the effect of elevation, herbivore pressure, mycorrhizal inoculation and temperature on plant resistance. Over a 1200 m elevation gradient, the levels of herbivory and iridoid glycosides (IGs) declined with increasing elevation. By planting seedlings at three different elevations, we further showed that both low‐elevation growing conditions and mycorrhizal inoculation resulted in increased plant resistance to herbivores. Finally, using a temperature‐controlled experiment comparing high‐ and low‐elevation ecotypes, we showed that high‐elevation ecotypes are less resistant to herbivory, and that lower temperatures impair IGs deployment after herbivore attack. We thus propose that both lower herbivore pressure, and colder temperatures relax the defense syndrome of high elevation plants.
Climate-driven change in plant-insect interactions along elevation gradients
Global warming is predicted to dramatically alter communities' composition through differential colonization abilities, such as between sessile plants and their mobile herbivores. Novel interactions between previously non-overlapping species may, however, also be mediated by altered plants' responses to herbivore attack. Syndromes of plant defences and tolerance are driven by inherited functional traits, biotic and abiotic conditions, and the geographical and historical contingencies affecting the community. Therefore, understanding climate change-driven herbivore responses and evolution towards a particular plant defence syndrome is key to forecasting species interactions in the near future. In this paper, we first document variations in herbivory, and plant defences along altitudinal gradients that act as 'natural experiments'. We then use an empirical model to predict how specialist herbivore abundance may shift with respect to elevation in the near future. Our field surveys and field experiment showed a decrease in herbivory with elevation. However, contrary to expectations, our meta-regression analyses showed that plant defences, particularly leaf toughness and flavonoid compounds, tend to be higher at high elevations, while secondary metabolites showed no clear trend with elevation. Based on those results, we discuss how plant communities and species-specific plant defence syndromes will change in response to the climate-driven herbivore colonization of higher altitudes. Particularly, plant from high elevation, due to high protection against abiotic stress may be already ecologically fitted to resist the sudden increase in herbivory pressure that they will likely experience during global change.
Herbivory in the Previous Generation Primes Plants for Enhanced Insect Resistance
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.
Herbivore specificity and the chemical basis of plant–plant communication in Baccharis salicifolia (Asteraceae)
It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant–plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant–plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant–plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects.
Mycorrhizal Fungi Enhance Resistance to Herbivores in Tomato Plants with Reduced Jasmonic Acid Production
Arbuscular mycorrhizal (AM) fungi favor plant growth by improving nutrient acquisition, but also by increasing their resistance against abiotic and biotic stressors, including herbivory. Mechanisms of AM fungal mediated increased resistance include a direct effect of AM fungi on plant vigor, but also a manipulation of the hormonal cascades, such as the systemic activation of jasmonic acid (JA) dependent defenses. However, how AM fungal inoculation and variation in the endogenous JA production interact to produce increased resistance against insect herbivores remains to be further elucidated. To address this question, three genotypes of Solanum lycopersicum L., a JA-biosynthesis deficient mutant, a JA over-accumulating mutant, and their wild-type were either inoculated with AM fungi or left un-inoculated. Plant growth-related traits and resistance against Spodoptera littoralis (Boisduval) caterpillars, a major crop pest, were measured. Overall, we found that deficiency in JA production reduced plant development and were the least resistant against S. littoralis. Moreover, AM fungi increased plant resistance against S. littoralis, but such beneficial effect was more pronounced in JA-deficient plant than on JA over-accumulating plants. These results highlight that AM fungi-driven increased plant resistance is negatively affected by the ability of plants to produce JA and that AM fungi complement JA-mediated endogenous plant defenses in this system.