Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
8
result(s) for
"Rattina, Vimel"
Sort by:
Mendelian Susceptibility to Mycobacterial Disease Caused by a Novel Founder IL12B Mutation in Saudi Arabia
by
Bin-Hussain, Ibrahim
,
Rattina, Vimel
,
Bustamante, Jacinta
in
Bacillus Calmette-Guerin vaccine
,
Disease
,
Etiology
2018
PurposeMendelian susceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency predisposing congenitally affected individuals to diseases caused by weakly virulent mycobacteria, such as Bacillus Calmette-Guérin (BCG) vaccine strains and environmental mycobacteria. IL-12p40 deficiency is a genetic etiology of MSMD resulting in impaired IL-12- and IL-23-dependent IFN-γ immunity. Most of the reported patients with IL-12p40 deficiency originate from Saudi Arabia (30 of 52) and carry the recurrent IL12B mutation c.315insA (27 of 30).MethodsWhole-exome sequencing was performed on three patients from two unrelated kindreds from Saudi Arabia with disseminated disease caused by a BCG vaccine substrain.ResultsGenetic analysis revealed a homozygous mutation, p.W60X, in exon 3 of the IL12B gene, resulting in complete IL12p40 deficiency. This mutation is recurrent due to a new founder effect.ConclusionsThis report provides evidence for a second founder effect for recurrent mutations of IL12B in Saudi Arabia.
Journal Article
Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis
2019
Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that are predicted to direct the isomerization of uridine residues to pseudouridine in small nuclear RNA and ribosomal RNA. We show that CRISPR/Cas9-introduced bi- and monoallelic SNORA31 deletions render human pluripotent stem cell (hPSC)-derived cortical neurons susceptible to HSV-1. Accordingly, SNORA31-mutated patient hPSC-derived cortical neurons are susceptible to HSV-1, like those from TLR3- or STAT1-deficient patients. Exogenous interferon (IFN)-β renders SNORA31- and TLR3- but not STAT1-mutated neurons resistant to HSV-1. Finally, transcriptome analysis of SNORA31-mutated neurons revealed normal responses to TLR3 and IFN-α/β stimulation but abnormal responses to HSV-1. Human SNORA31 thus controls central nervous system neuron-intrinsic immunity to HSV-1 by a distinctive mechanism.
Journal Article
Inherited p40phox deficiency differs from classic chronic granulomatous disease
2018
Biallelic loss-of-function (LOF) mutations of the NCF4 gene, encoding the p40phox subunit of the phagocyte NADPH oxidase, have been described in only 1 patient. We report on 24 p40phox-deficient patients from 12 additional families in 8 countries. These patients display 8 different in-frame or out-of-frame mutations of NCF4 that are homozygous in 11 of the families and compound heterozygous in another. When overexpressed in NB4 neutrophil-like cells and EBV-transformed B cells in vitro, the mutant alleles were found to be LOF, with the exception of the p.R58C and c.120_134del alleles, which were hypomorphic. Particle-induced NADPH oxidase activity was severely impaired in the patients' neutrophils, whereas PMA-induced dihydrorhodamine-1,2,3 (DHR) oxidation, which is widely used as a diagnostic test for chronic granulomatous disease (CGD), was normal or mildly impaired in the patients. Moreover, the NADPH oxidase activity of EBV-transformed B cells was also severely impaired, whereas that of mononuclear phagocytes was normal. Finally, the killing of Candida albicans and Aspergillus fumigatus hyphae by neutrophils was conserved in these patients, unlike in patients with CGD. The patients suffer from hyperinflammation and peripheral infections, but they do not have any of the invasive bacterial or fungal infections seen in CGD. Inherited p40phox deficiency underlies a distinctive condition, resembling a mild, atypical form of CGD.
Journal Article
Development and evaluation of a genome‐wide Coffee 8.5K SNP array and its application for high‐density genetic mapping and for investigating the origin of Coffea arabica L
by
Crouzillat, Dominique
,
Pégard, Marie
,
Descombes, Patrick
in
Agronomy
,
allotetraploidy
,
Arrays
2019
Summary Coffee species such as Coffea canephora P. (Robusta) and C. arabica L. (Arabica) are important cash crops in tropical regions around the world. C. arabica is an allotetraploid (2n = 4x = 44) originating from a hybridization event of the two diploid species C. canephora and C. eugenioides (2n = 2x = 22). Interestingly, these progenitor species harbour a greater level of genetic variability and are an important source of genes to broaden the narrow Arabica genetic base. Here, we describe the development, evaluation and use of a single‐nucleotide polymorphism (SNP) array for coffee trees. A total of 8580 unique and informative SNPs were selected from C. canephora and C. arabica sequencing data, with 40% of the SNP located in annotated genes. In particular, this array contains 227 markers associated to 149 genes and traits of agronomic importance. Among these, 7065 SNPs (~82.3%) were scorable and evenly distributed over the genome with a mean distance of 54.4 Kb between markers. With this array, we improved the Robusta high‐density genetic map by adding 1307 SNP markers, whereas 945 SNPs were found segregating in the Arabica mapping progeny. A panel of C. canephora accessions was successfully discriminated and over 70% of the SNP markers were transferable across the three species. Furthermore, the canephora‐derived subgenome of C. arabica was shown to be more closely related to C. canephora accessions from northern Uganda than to other current populations. These validated SNP markers and high‐density genetic maps will be useful to molecular genetics and for innovative approaches in coffee breeding.
Journal Article
IRF4 haploinsufficiency in a family with Whipple’s disease
2018
Most humans are exposed to Tropheryma whipplei (Tw). Whipple’s disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing four WD patients and five healthy Tw chronic carriers. We hypothesized that WD displays autosomal dominant (AD) inheritance, with age-dependent incomplete penetrance. We identified a single very rare non-synonymous mutation in the four patients: the private R98W variant of IRF4, a transcription factor involved in immunity. The five Tw carriers were younger, and also heterozygous for R98W. We found that R98W was loss-of-function, modified the transcriptome of heterozygous leukocytes following Tw stimulation, and was not dominant-negative. We also found that only six of the other 153 known non-synonymous IRF4 variants were loss-of-function. Finally, we found that IRF4 had evolved under purifying selection. AD IRF4 deficiency can underlie WD by haploinsufficiency, with age-dependent incomplete penetrance. In 1907, George Hoyt Whipple – an American pathologist working at Johns Hopkins University in Baltimore – described a new inflammatory disease that affects the intestine. Patients with this condition, now known as Whipple’s disease, experience diarrhea, weight loss, and abdominal and joint pain. The disease is rare; it affects about one in a million people, mostly those over the age of 50 who are of European descent. Later it was discovered that bacteria called Tropheryma whipplei cause Whipple’s disease and that antibiotics can cure it. These bacteria are widespread and yet only a small minority of individuals infected with T. whipplei goes on to develop Whipple’s disease. In some populations, over 50% of individuals have been infected with the bacteria at some point in their lives, but most will get rid of the infection. This raised the question: when exposed to the same microbe, why do some individuals develop a severe disease, while others remain unharmed? From the 1950s onwards, scientists identified a few families with multiple members who have developed Whipple’s disease. These observations suggested that human genes may play a role in determining whether a person infected with T. whipplei becomes ill. Rare genetic mutations that affect the immune system have also been linked to the development of life-threatening cases of influenza or tuberculosis. Now, Guérin et al. report that, in one French family, an extremely rare mutation in the gene that codes for a protein called IRF4 may contribute to the development of Whipple’s disease. This family had four members with Whipple’s disease, all of whom had one copy of the gene with this rare mutation and one normal copy of the gene. The IRF4 protein acts like a switch that turns on and off some genes involved in the body’s response to infection. In patients with this mutation, the IRF4 protein does not work as it should. Guérin et al. suggest that Whipple’s disease may be caused by specific genetic mutations affecting the immune system in subjects infected by T. whipplei. More studies are needed to see if other genetic mutations also contribute to other cases of Whipple’s disease. Such studies may help physicians to better understand why some people become sick after T. whipplei infections while others do not. They may also help physicians to diagnose the disease, and even lead to better treatments.
Journal Article
Inherited p40^sup phox^ deficiency differs from classic chronic granulomatous disease
by
Bernasconi, Andrea R
,
Garcés, Carlos
,
Worth, Austen
in
Alleles
,
Biomedical research
,
Chronic granulomatous disease
2018
Biallelic loss-of-function (LOF) mutations of the NCF4 gene, encoding the p40phox subunit of the phagocyte NADPH oxidase, have been described in only 1 patient. We report on 24 p40phox-deficient patients from 12 additional families in 8 countries. These patients display 8 different in-frame or out-of-frame mutations of NCF4 that are homozygous in 11 of the families and compound heterozygous in another. When overexpressed in NB4 neutrophil-like cells and EBV-transformed B cells in vitro, the mutant alleles were found to be LOF, with the exception of the p.R58C and c.120_134del alleles, which were hypomorphic. Particle-induced NADPH oxidase activity was severely impaired in the patients' neutrophils, whereas PMAinduced dihydrorhodamine-1,2,3 (DHR) oxidation, which is widely used as a diagnostic test for chronic granulomatous disease (CGD), was normal or mildly impaired in the patients. Moreover, the NADPH oxidase activity of EBV-transformed B cells was also severely impaired, whereas that of mononuclear phagocytes was normal. Finally, the killing of Candida albicans and Aspergillus fumigatus hyphae by neutrophils was conserved in these patients, unlike in patients with CGD. The patients suffer from hyperinflammation and peripheral infections, but they do not have any of the invasive bacterial or fungal infections seen in CGD. Inherited p40phox deficiency underlies a distinctive condition, resembling a mild, atypical form of CGD.
Journal Article
IRF4 haploinsufficiency in a family with Whipple s disease
2017
Whipple s disease (WD) strikes only a small minority of the individuals infected with Tropheryma whipplei (Tw). We studied a large multiplex kindred, containing four otherwise healthy WD patients and five healthy Tw carriers. We tested the hypothesis that WD follows autosomal dominant (AD) inheritance with age-dependent incomplete penetrance. By combining genome-wide linkage and whole exome sequencing, we identified a single very rare non-synonymous mutation in the four patients: the R98W variant of Interferon regulatory factor 4 (IRF4), a transcription factor with pleiotropic roles in immunity. The five Tw carriers were younger and heterozygous for R98W too. We showed that R98W was a loss-of-function allele and led to a distinctive pattern of transcription in heterozygous leukocytes following Tw stimulation. Finally, we found that IRF4 evolved under purifying selection and that R98W was not dominant-negative. Haploinsufficiency at the IRF4 locus in this kindred underlies WD with AD inheritance and age-dependent incomplete penetrance.
IRF4 haploinsufficiency in a family with Whipple’s disease
2017
The pathogenesis of Whipple’s disease (WD) remains largely unknown, as WD strikes only a very small minority of the individuals infected with Tropheryma whipplei (Tw). Asymptomatic carriage of Tw is less rare. We studied a large multiplex French kindred, containing four otherwise healthy WD patients (mean age: 76.7 years) and five healthy carriers of Tw (mean age: 55 years). We used a strategy combining genome-wide linkage analysis and whole-exome sequencing to test the hypothesis that WD is inherited in an autosomal dominant (AD) manner, with age-dependent incomplete penetrance. WD was linked to 12 genomic regions covering 27 megabases in the four patients. These regions contained only one very rare non-synonymous variation: the R98W variant of IRF4. The five Tw carriers were heterozygous for R98W. Interferon regulatory factor 4 (IRF4) is a transcription factor with pleiotropic roles in immunity. We showed that R98W was a loss-of-function allele, like only five other exceedingly rare IRF4 alleles of a total of 39 rare and common non-synonymous alleles tested. Furthermore, heterozygosity for R98W led to a distinctive pattern of transcription in leukocytes following stimulation with BCG or Tw. Finally, we found that IRF4 had evolved under purifying selection and that R98W was not dominant-negative, suggesting that the IRF4 deficiency in this kindred was due to haploinsufficiency. Overall, haploinsufficiency at the IRF4 locus selectively underlies WD in this multiplex kindred. This deficiency displays AD inheritance with incomplete penetrance, and chronic carriage probably precedes WD by several decades in Tw-infected heterozygotes.