Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Rauf, Aunu"
Sort by:
An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems
We present a synthetic review and expert consultation that assesses the actual risks posed by arthropod pests in four major crops, identifies targets for integrated pest management (IPM) in terms of cultivated land needing pest control and gauges the implementation “readiness” of non-chemical alternatives. Our assessment focuses on the world’s primary target pests for neonicotinoid-based management: western corn rootworm (WCR, Diabrotica virgifera virgifera) in maize; wireworms (Agriotes spp.) in maize and winter wheat; bird cherry-oat aphid (Rhopalosiphum padi) in winter wheat; brown planthopper (BPH, Nilaparvata lugens) in rice; cotton aphid (Aphis gossypii) and silver-leaf whitefly (SLW, Bemisia tabaci) in cotton. First, we queried scientific literature databases and consulted experts from different countries in Europe, North America, and Asia about available IPM tools for each crop-pest system. Next, using an online survey, we quantitatively assessed the economic relevance of target pests by compiling country-level records of crop damage, yield impacts, extent of insecticide usage, and “readiness” status of various pest management alternatives (i.e., research, plot-scale validation, grower-uptake). Biological control received considerable scientific attention, while agronomic strategies (e.g., crop rotation), insurance schemes, decision support systems (DSS), and innovative pesticide application modes were listed as key alternatives. Our study identifies opportunities to advance applied research, IPM technology validation, and grower education to halt or drastically reduce our over-reliance on systemic insecticides globally.
Species Investigation of Rice Stem Borers and Its Parasitoids on Fallowing Rice Fields at Karawang, Indonesia
Rice stem borers (RSB) cause the same damage symptoms and occur through the season and time. During the off-season for rice, these stem borers are not well-known. The research aims to determine the effect of fallowing rice on the presence of rice stem borers and their parasitoids, the potential for RSB infestation, and their parasitoid on subsequent rice seedlings in nurseries at Karawang Regency, West Java. Several variables are observed, including the number of rice stem borer larvae on stubbles, egg masses, the percentage of parasitized eggs, and the number of adults of rice stem borer in nurseries. The results show that species of rice stem borer on the fallow rice are Scirpophaga incertulas and Sesamia inferens. The population of S. incertulas is significantly higher on long rice fallow. The height of the paddy stubble at the two locations is not very different. However, the infested stubble in the short fallow period is higher than those in the long fallow. Eggs of S. incertulas whose high percentage hatched and parasitized, are primarily found in nurseries of areas with long fallow. There are three species of parasitoids identified.
Continental-scale suppression of an invasive pest by a host-specific parasitoid underlines both environmental and economic benefits of arthropod biological control
Biological control, a globally-important ecosystem service, can provide long-term and broad-scale suppression of invasive pests, weeds and pathogens in natural, urban and agricultural environments. Following (few) historic cases that led to sizeable environmental up-sets, the discipline of arthropod biological control has—over the past decades—evolved and matured. Now, by deliberately taking into account the ecological risks associated with the planned introduction of insect natural enemies, immense environmental and societal benefits can be gained. In this study, we document and analyze a successful case of biological control against the cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae) which invaded Southeast Asia in 2008, where it caused substantial crop losses and triggered two- to three-fold surges in agricultural commodity prices. In 2009, the host-specific parasitoid Anagyrus lopezi (Hymenoptera: Encyrtidae) was released in Thailand and subsequently introduced into neighboring Asian countries. Drawing upon continental-scale insect surveys, multi-year population studies and (field-level) experimental assays, we show how A. lopezi attained intermediate to high parasitism rates across diverse agro-ecological contexts. Driving mealybug populations below non-damaging levels over a broad geographical area, A. lopezi allowed yield recoveries up to 10.0 t/ha and provided biological control services worth several hundred dollars per ha (at local farm-gate prices) in Asia’s four-million ha cassava crop. Our work provides lessons to invasion science and crop protection worldwide. Furthermore, it accentuates the importance of scientifically-guided biological control for insect pest management, and highlights its potentially large socio-economic benefits to agricultural sustainability in the face of a debilitating invasive pest. In times of unrelenting insect invasions, surging pesticide use and accelerating biodiversity loss across the globe, this study demonstrates how biological control—as a pure public good endeavor—constitutes a powerful, cost-effective and environmentally-responsible solution for invasive species mitigation.
Generalist Predators Shape Biotic Resistance along a Tropical Island Chain
Islands offer exclusive prisms for an experimental investigation of biodiversity x ecosystem function interplay. Given that species in upper trophic layers, e.g., arthropod predators, experience a comparative disadvantage on small, isolated islands, such settings can help to clarify how predation features within biotic resistance equations. Here, we use observational and manipulative studies on a chain of nine Indonesian islands to quantify predator-mediated biotic resistance against the cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) and the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Across island settings, a diverse set of generalist lacewing, spider and ladybeetle predators aggregates on P. manihoti infested plants, attaining max. (field-level) abundance levels of 1.0, 8.0 and 3.2 individuals per plant, respectively. Though biotic resistance—as imperfectly defined by a predator/prey ratio index—exhibits no inter-island differences, P. manihoti population regulation is primarily provided through an introduced monophagous parasitoid. Meanwhile, resident predators, such as soil-dwelling ants, inflict apparent mortality rates up to 100% for various S. frugiperda life stages, which translates into a 13- to 800-fold lower S. frugiperda survivorship on small versus large islands. While biotic resistance against S. frugiperda is ubiquitous along the island chain, its magnitude differs between island contexts, seasons and ecological realms, i.e., plant canopy vs. soil surface. Hence, under our experimental context, generalist predators determine biotic resistance and exert important levels of mortality even in biodiversity-poor settings. Given the rapid pace of biodiversity loss and alien species accumulation globally, their active conservation in farmland settings (e.g., through pesticide phasedown) is pivotal to ensuring the overall resilience of production ecosystems.
Termite Diversity in Urban Landscape, South Jakarta, Indonesia
The population of South Jakarta, a city within the Province of Jakarta Capital Region, is increasing annually, and the development of land into building causes termite diversity loss. The aim of this research was to determine the diversity of subterranean termite species and their distribution in South Jakarta and to evaluate the soil profile termite habitat. This study was conducted in South Jakarta and was carried out at four residential areas representing four randomly selected sub-districts. Specimens were collected with a baiting system. At each residence, as many as 25–30 stakes of pine wood (Pinus merkusii) sized 2 cm × 2 cm × 46 cm were placed for termite sampling. Soil samples were also collected from each residence for testing of their texture, pH, soil water content, and C-organic. Three species of subterranean termites were identified, including Coptotermes curvignathus, Microtermes insperatus, and Macrotermes gilvus, with area-specific variations in occurrence. The soil and weather conditions in the studied areas provided suitable habitat for termites, and M. insperatus was the most commonly found species.
The invasive liriomyza huidobrensis (Diptera: Agromyzidae): Understanding its pest status and management globally
Liriomyza huidobrensis (Blanchard) is native to South America but has expanded its range and invaded many regions of the world, primarily on flowers and to a lesser extent on horticultural product shipments. As a result of initial invasion into an area, damage caused is usually significant but not necessarily sustained. Currently, it is an economic pest in selected native and invaded regions of the world. Adults cause damage by puncturing abaxial and adaxial leaf surfaces for feeding and egg laying sites. Larvae mine the leaf parenchyma tissues which can lead to leaves drying and wilting. We have recorded 365 host plant species from 49 families and more than 106 parasitoid species. In a subset of the Argentinian data, we found that parasitoid community composition attacking L. huidobrensis differs significantly in cultivated and uncultivated plants. No such effect was found at the world level, probably due to differences in collection methods in the different references. We review the existing knowledge as a means of setting the context for new and unpublished data. The main objective is to provide an update of widely dispersed and until now unpublished data, evaluate dispersion of the leafminer and management strategies in different regions of the world, and highlight the need to consider the possible effects of climate change on further regional invasions or expansions.
Computer Vision for Screening Resistance Level of Rice Varieties to Brown Planthopper
Brown planthopper is one of the most important insect pest that threatens the stability of national rice production in Indonesia. One of the efforts to save rice production is by using brown planthopper resistant variety. Currently the determination approach is still conventional based on Standard Seedboxes Screening Test from IRRI with assistance of experienced experts in the scoring process resistance level.In this study, a prototype of application system to predict resistance levels by image color approach was developed. The method consists of collecting images data, preparation process (background and objects segmentation), and determination of area proportion which has been infected (sick and dead) and healthy, based on ‘A’ value from CIELab color space laboratory. According to proportion value distribution, the rule of rice resistance to brown planthopper assessment based on image was developed. The rule is mostly similar with IRRI standard rules. All of images were assessed based on the rule and then the model was developed with an error rate of 17.02%.
Sap-Sucking Insect Records (Hemiptera: Sternorrhyncha and Thysanoptera: Thripidae) from Indonesia
Sap-sucking insects (Hemiptera: Sternorrhyncha and Thysanoptera: Thripidae) collected in Java, Sumatra and Sulawesi were identified. From 28 samples collected on 9 crop and ornamental host-plant species, 21 species of sap-sucking insects were identified, 12 (57%) of which were new island distribution records. This suggests that the Indonesian insect fauna has not been documented for a long time. The new distribution records are: from Java, Lepidosaphes gloverii (Packard) (Diaspididae); from Sumatra, Clavaspidiotus apicalis Takagi (Diaspididae); and from Sulawesi, Coccus hesperidum L. (Coccidae), Saissetia coffeae (Walker) (Coccidae), Aulacaspis yasumatsui Takagi (Diaspididae), Hemiberlesia palmae (Cockerell) (Diaspididae), Lepidosaphes tokionis (Kuwana) (Diaspididae), Microparlatoria fici (Takahashi) (Diaspididae), Pseudaulacaspis cockerelli (Cooley) (Diaspididae), Icerya aegyptiaca (Douglas) (Monophlebidae), I. pulchra (Leonardi) (Monophlebidae) and Selenothrips rubrocinctus (Giard) (Thripidae). Clavaspidiotus apicalis could become a potentially invasive pest of citrus.
The Invasive Liriomyza huidobrensis (Diptera: Agromyzidae): Understanding Its Pest Status and Management Globally
Liriomyza huidobrensis (Blanchard) is native to South America but has expanded its range and invaded many regions of the world, primarily on flowers and to a lesser extent on horticultural product shipments. As a result of initial invasion into an area, damage caused is usually significant but not necessarily sustained. Currently, it is an economic pest in selected native and invaded regions of the world. Adults cause damage by puncturing abaxial and adaxial leaf surfaces for feeding and egg laying sites. Larvae mine the leaf parenchyma tissues which can lead to leaves drying and wilting. We have recorded 365 host plant species from 49 families and more than 106 parasitoid species. In a subset of the Argentinian data, we found that parasitoid community composition attacking L. huidobrensis differs significantly in cultivated and uncultivated plants. No such effect was found at the world level, probably due to differences in collection methods in the different references. We review the existing knowledge as a means of setting the context for new and unpublished data. The main objective is to provide an update of widely dispersed and until now unpublished data, evaluate dispersion of the leafminer and management strategies in different regions of the world, and highlight the need to consider the possible effects of climate change on further regional invasions or expansions.
The invasive Liriomyza huidobrensis
Liriomyza huidobrensis (Blanchard) is native to South America but has expanded its range and invaded many regions of the world, primarily on flowers and to a lesser extent on horticultural product shipments. As a result of initial invasion into an area, damage caused is usually significant but not necessarily sustained. Currently, it is an economic pest in selected native and invaded regions of the world. Adults cause damage by puncturing abaxial and adaxial leaf surfaces for feeding and egg laying sites. Larvae mine the leaf parenchyma tissues which can lead to leaves drying and wilting. We have recorded 365 host plant species from 49 families and more than 106 parasitoid species. In a subset of the Argentinian data, we found that parasitoid community composition attacking L. huidobrensis differs significantly in cultivated and uncultivated plants. No such effect was found at the world level, probably due to differences in collection methods in the different references. We review the existing knowledge as a means of setting the context for new and unpublished data. The main objective is to provide an update of widely dispersed and until now unpublished data, evaluate dispersion of the leafminer and management strategies in different regions of the world, and highlight the need to consider the possible effects of climate change on further regional invasions or expansions.