Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Raul Tupayachi"
Sort by:
Accelerated losses of protected forests from gold mining in the Peruvian Amazon
2016
Gold mining in Amazonia involves forest removal, soil excavation, and the use of liquid mercury, which together pose a major threat to biodiversity, water quality, forest carbon stocks, and human health. Within the global biodiversity hotspot of Madre de Dios, Peru, gold mining has continued despite numerous 2012 government decrees and enforcement actions against it. Mining is now also thought to have entered federally protected areas, but the rates of miner encroachment are unknown. Here, we utilize high-resolution remote sensing to assess annual changes in gold mining extent from 1999 to 2016 throughout the Madre de Dios region, including the high-diversity Tambopata National Reserve and buffer zone. Regionally, gold mining-related losses of forest averaged 4437 ha yr−1. A temporary downward inflection in the annual growth rate of mining-related forest loss following 2012 government action was followed by a near doubling of the deforestation rate from mining in 2013-2014. The total estimated area of gold mining throughout the region increased about 40% between 2012 and 2016, including in the Tambopata National Reserve. Our results reveal an urgent need for more socio-environmental effort and law enforcement action to combat illegal gold mining in the Peruvian Amazon.
Journal Article
Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring
by
Asner, Gregory P.
,
Luna, Ernesto Ráez
,
Llactayo, William
in
Amazonia
,
Animal, plant and microbial ecology
,
anthropogenic activities
2013
Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.
Journal Article
Amazonian functional diversity from forest canopy chemical assembly
by
Asner, Gregory P.
,
Martinez, Paola
,
Carranza-Jiménez, Loreli
in
Amazonia
,
Analysis of Variance
,
Biodiversity
2014
Patterns of tropical forest functional diversity express processes of ecological assembly at multiple geographic scales and aid in predicting ecological responses to environmental change. Tree canopy chemistry underpins forest functional diversity, but the interactive role of phylogeny and environment in determining the chemical traits of tropical trees is poorly known. Collecting and analyzing foliage in 2,420 canopy tree species across 19 forests in the western Amazon, we discovered (i) systematic, community-scale shifts in average canopy chemical traits along gradients of elevation and soil fertility; (ii) strong phylogenetic partitioning of structural and defense chemicals within communities independent of variation in environmental conditions; and (iii) strong environmental control on foliar phosphorus and calcium, the two rock-derived elements limiting CO ₂ uptake in tropical forests. These findings indicate that the chemical diversity of western Amazonian forests occurs in a regionally nested mosaic driven by long-term chemical trait adjustment of communities to large-scale environmental filters, particularly soils and climate, and is supported by phylogenetic divergence of traits essential to foliar survival under varying environmental conditions. Geographically nested patterns of forest canopy chemical traits will play a role in determining the response and functional rearrangement of western Amazonian ecosystems to changing land use and climate.
Journal Article
Amazonian landscapes and the bias in field studies of forest structure and biomass
2014
Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9–98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.
Significance Although tropical forests absorb more carbon dioxide as biomass than any other terrestrial ecosystem, biomass estimates disagree substantially at landscape-to-regional scales. Current biomass maps rely upon field plots for extrapolations to larger scales, yet whether field plots accurately represent landscape-scale variables has not been assessed. To our knowledge, this is the first study to compare forest structural variables and aboveground biomass derived from field plots to those derived from their host landscapes using airborne 3D remote sensing. We found that typical field plots can produce substantially biased estimates and the number of plots needed to reduce this bias is impractical, positioning airborne remote sensing as a core tool for mapping forest structure and biomass across tropical landscapes.
Journal Article
Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region
by
Martin, Roberta E
,
Martinez, Paola
,
Anderson, Christopher B
in
Altitude
,
Amazon basin
,
Amazonia
2014
Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400‐m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400–2500‐nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter‐specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock‐derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85–93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy.
Journal Article
Targeted carbon conservation at national scales with high-resolution monitoring
by
Felipe Sinca
,
Miles R. Silman
,
Roberta E. Martin
in
Biological Sciences
,
Carbon
,
carbon sequestration
2014
Terrestrial carbon conservation can provide critical environmental, social, and climate benefits. Yet, the geographically complex mosaic of threats to, and opportunities for, conserving carbon in landscapes remain largely unresolved at national scales. Using a new high-resolution carbon mapping approach applied to Peróúúú, a megadiverse country undergoing rapid land use change, we found that at least 0.8 Pg of aboveground carbon stocks are at imminent risk of emission from land use activities. Map-based information on the natural controls over carbon density, as well as current ecosystem threats and protections, revealed three biogeographically explicit strategies that fully offset forthcoming land-use emissions. High-resolution carbon mapping affords targeted interventions to reduce greenhouse gas emissions in rapidly developing tropical nations.
Significance Land use is a principal driver of carbon emissions, either directly through land change processes such as deforestation or indirectly via transportation and industries supporting natural resource use. To minimize the effects of land use on the climate system, natural ecosystems are needed to offset gross emissions through carbon sequestration. Managing this critically important service must be achieved tactically if it is to be cost-effective. We have developed a high-resolution carbon mapping approach that can identify biogeographically explicit targets for carbon storage enhancement among all landholders within a country. Applying our approach to Peróúú reveals carbon threats and protections, as well as major opportunities for using ecosystems to sequester carbon. Our approach is scalable to any tropical forest country.
Journal Article
Scale dependence of canopy trait distributions along a tropical forest elevation gradient
by
Montoya Pillco, Milenka
,
Salinas, Norma
,
Quispe Huaypar, Katherine
in
Altitude
,
Analytical methods
,
Canopies
2017
Average responses of forest foliar traits to elevation are well understood, but far less is known about trait distributional responses to elevation at multiple ecological scales. This limits our understanding of the ecological scales at which trait variation occurs in response to environmental drivers and change.
We analyzed and compared multiple canopy foliar trait distributions using field sampling and airborne imaging spectroscopy along an Andes-to-Amazon elevation gradient. Field-estimated traits were generated from three community-weighting methods, and remotely sensed estimates of traits were made at three scales defined by sampling grain size and ecological extent.
Field and remote sensing approaches revealed increases in average leaf mass per unit area (LMA), water, nonstructural carbohydrates (NSCs) and polyphenols with increasing elevation. Foliar nutrients and photosynthetic pigments displayed little to no elevation trend. Sample weighting approaches had little impact on field-estimated trait responses to elevation. Plot representativeness of trait distributions at landscape scales decreased with increasing elevation. Remote sensing indicated elevation-dependent increases in trait variance and distributional skew.
Multiscale invariance of LMA, leaf water and NSC mark these traits as candidates for tracking forest responses to changing climate. Trait-based ecological studies can be greatly enhanced with multiscale studies made possible by imaging spectroscopy.
Journal Article
Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests
by
Asner, Gregory P.
,
Martinez, Paola
,
Powell, George V. N.
in
Australasian region
,
Biological taxonomies
,
canopy
2011
Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific Islands to quantify environmental and taxonomic drivers of LMA variation, and to advance remote-sensing measures of LMA. We uncovered strong taxonomic organization of LMA, with species accounting for 70%% of the global variance and up to 62%% of the variation within a forest stand. Climate, growth habit, and site conditions are secondary contributors (1-–23%%) to the observed LMA patterns. Intraspecific variation in LMA averages 16%%, which is a fraction of the variation observed between species. We then used spectroscopic remote sensing (400-–2500 nm) to estimate LMA with an absolute uncertainty of 14-–15 g/m
2
(
r
2
== 0.85), or ∼∼10%% of the global mean. With radiative transfer modeling, we demonstrated the scalability of spectroscopic remote sensing of LMA to the canopy level. Our study indicates that remotely sensed patterns of LMA will be driven by taxonomic variation against a backdrop of environmental controls expressed at site and regional levels.
Journal Article
Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia
2015
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.
Journal Article
Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy
by
Asner, Gregory P.
,
Sinca, Felipe
,
Anderson, Christopher B.
in
704/158/2445
,
704/158/47
,
Biogeochemistry
2015
Tropical forest functional diversity, which is a measure of the diversity of organismal interactions with the environment, is poorly understood despite its importance for linking evolutionary biology to ecosystem biogeochemistry. Functional diversity is reflected in functional traits such as the concentrations of different compounds in leaves or the density of leaf mass, which are related to plant activities such as plant defence, nutrient cycling, or growth. In the Amazonian lowlands, river movement and microtopography control nutrient mobility, which may influence functional trait distributions. Here we use airborne laser-guided imaging spectroscopy to develop maps of 16 forest canopy traits, throughout four large landscapes that harbour three common forest community types on the Madre de Dios and Tambopata rivers in southwestern Amazonia. Our maps, which are based on quantitative chemometric analysis of forest canopies with visible-to-near infrared (400–2,500 nm) spectroscopy, reveal substantial variation in canopy traits and their distributions within and among forested landscapes. Forest canopy trait distributions are arranged in a nested pattern, with location along rivers controlling trait variation between different landscapes, and microtopography controlling trait variation within landscapes. We suggest that processes of nutrient deposition and depletion drive increasing phosphorus limitation, and a corresponding increase in plant defence, in an eastward direction from the base of the Andes into the Amazon Basin.
The controls on plant functional diversity are unclear. Analysis of spectral data from the tree canopy in the Amazonian lowlands implies that plant functional traits are influenced by nutrient supply, which in turn varies with topography.
Journal Article