Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
138 result(s) for "Rawson, Robert"
Sort by:
Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets
Knowledge of key drivers and therapeutic targets in mucosal melanoma is limited due to the paucity of comprehensive mutation data on this rare tumor type. To better understand the genomic landscape of mucosal melanoma, here we describe whole genome sequencing analysis of 67 tumors and validation of driver gene mutations by exome sequencing of 45 tumors. Tumors have a low point mutation burden and high numbers of structural variants, including recurrent structural rearrangements targeting TERT, CDK4 and MDM2 . Significantly mutated genes are NRAS , BRAF , NF1 , KIT , SF3B1 , TP53 , SPRED1 , ATRX , HLA-A and CHD8. SF3B1 mutations occur more commonly in female genital and anorectal melanomas and CTNNB1 mutations implicate a role for WNT signaling defects in the genesis of some mucosal melanomas. TERT aberrations and ATRX mutations are associated with alterations in telomere length. Mutation profiles of the majority of mucosal melanomas suggest potential susceptibility to CDK4/6 and/or MEK inhibitors. Mucosal melanomas are challenging to treat partly because so little is known about the genetic drivers underpinning them. Here, the authors perform a genomic landscape analysis of samples collected from three continents, revealing a potential role for CDK4/6 or MEK inhibition in the treatment of the disease.
Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB–C, BRAFV600 mutation-positive melanoma (NeoCombi): a single-arm, open-label, single-centre, phase 2 trial
Adjuvant dabrafenib plus trametinib therapy improves relapse-free survival in patients with resected stage III melanoma. We aimed to ascertain the proportion of patients who would have a pathological response and a response according to Response Evaluation Criteria in Solid Tumors (RECIST) after neoadjuvant dabrafenib plus trametinib therapy for resectable clinical stage III melanoma. NeoCombi was a single-arm, open-label, single-centre, phase 2 study done at Melanoma Institute Australia (Sydney, NSW, Australia). Eligible patients were adults (aged ≥18 years) with histologically confirmed, resectable, RECIST-measurable, clinical stage IIIB–C (American Joint Committee on Cancer [AJCC] 7th edition), BRAFV600-mutant melanoma, and had an Eastern Cooperative Oncology Group performance status of 1 or lower. Patients received 150 mg dabrafenib orally, twice daily, plus 2 mg trametinib orally, once daily, for 52 weeks (12 weeks of neoadjuvant therapy before complete resection of the pre-therapy tumour bed, and 40 weeks of adjuvant therapy thereafter). CT and PET scans were done at baseline and before resection. The primary outcomes were the proportion of patients achieving a complete pathological response and the proportion of patients achieving a response according to RECIST at week 12, analysed as per protocol. This trial is registered with ClinicalTrials.gov, NCT01972347, and follow-up of patients is ongoing. Between Aug 20, 2014, and April 19, 2017, 40 patients were screened, of whom 35 eligible patients were enrolled, received neoadjuvant dabrafenib plus trametinib, and underwent resection. At the data cutoff (Sept 24, 2018), median follow-up was 27 months (IQR 21–36). At resection, 30 (86%) patients achieved a RECIST response; 16 (46%; 95% CI 29–63) had a complete response and 14 (40%; 24–58) had a partial response. Five patients (14%; 95% CI 5–30) had stable disease, and no patients progressed. After resection and pathological evaluation, all 35 patients achieved a pathological response, of whom 17 (49%; 95% CI 31–66) patients had a complete pathological response and 18 (51%; 95% CI 34–69) had a non-complete pathological response. Treatment-related serious adverse events occurred in six (17%) of 35 patients and grade 3–4 adverse events occurred in ten (29%) patients. No treatment-related deaths were reported. Neoadjuvant dabrafenib plus trametinib therapy could be considered in the management of RECIST-measurable resectable stage III melanoma as it led to a high proportion of patients achieving a complete response according to RECIST and a high proportion of patients achieving a complete pathological response, with no progression during neoadjuvant therapy. GlaxoSmithKline; Novartis; National Health and Medical Research Council, Australia; and Melanoma Institute Australia.
The SREBP pathway — insights from insigs and insects
Key Points The SREBPs (sterol regulatory element binding proteins) are membrane-bound transcription factors that control lipid synthesis in animal cells. The transcriptionally active amino terminus is released from the membrane following two sequential proteolytic steps that are carried out by S1P and S2P. Lipids control the release of active SREBP by regulating the access of the precursor protein, which is located in the endoplasmic reticulum (ER), to the proteases, S1P and S2P, which are found in the Golgi apparatus. Movement of SREBP from the ER to the Golgi requires an escort factor, known as SCAP (SREBP-cleavage-activating protein). The amino-terminal half of SCAP consists of eight membrane-spanning helices, of which helices 2–6 comprise the sterol-sensing domain. SREBP and SCAP form a complex that is stable in both the presence and the absence of sterols. The SCAP's sterol-sensing domain is essential for transducing signals from cellular lipid concentrations to transport SREBP from the ER to the Golgi. Two recently identified proteins, Insig-1 and Insig-2, are required for the sterol-mediated regulation of SCAP–SREBP movement. Point mutations within the SCAP sterol-sensing domain abolish sterol-mediated regulation and block the interaction between SCAP and Insig-1 or Insig-2. Insig-1 also interacts with the sterol-sensing domain of HMG CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis, to regulate its stability. Insects have all the known components of the SREBP pathway, except for the Insig proteins. Processing of SREBP in insects is regulated by phosphatidylethanolamine, rather than by sterols. The suppressive action of two such different lipids on SREBP processing indicates that SCAP might sense physical properties of the membrane rather than interact with lipids in a classic receptor–ligand fashion. Animal cells coordinate lipid homeostasis by end-product feedback regulation of transcription. The control occurs through the proteolytic release of transcriptionally active sterol regulatory element binding proteins (SREBPs) from intracellular membranes. This feedback system has unexpected features that are found in all cells. Here, we consider recently discovered components of the regulatory machinery that govern SREBP processing, as well as studies in Drosophila that indicate an ancient role for the SREBP pathway in integrating membrane composition and lipid biosynthesis.
Melanoma pathology reporting and staging
The pathological diagnosis of melanoma can be challenging. The provision of an appropriate biopsy and pertinent history can assist in establishing an accurate diagnosis and reliable estimate of prognosis. In their reports, pathologists should document both the criteria on which the diagnosis was based as well as important prognostic parameters. For melanoma, such prognostic parameters include tumor thickness, ulceration, mitotic rate, lymphovascular invasion, neurotropism, and tumor-infiltrating lymphocytes. Disease staging is important for risk stratifying melanoma patients into prognostic groups and patient management recommendations are often stage based. The 8th edition American Joint Committee on Cancer (AJCC) Melanoma Staging System was implemented in 2018 and several important changes were made. Tumor thickness and ulceration remain the key T category criteria. T1b melanomas were redefined as either ulcerated melanomas <1.0 mm thick or nonulcerated melanomas 0.8–1.0 mm thick. Although mitotic rate was removed as a T category criterion in the 8th edition, it remains a very important prognostic factor and should continue to be documented in primary melanoma pathology reports. It was also recommended in the 8th edition that tumor thickness be recorded to the nearest 0.1 mm (rather than the nearest 0.01 mm). In the future, incorporation of additional prognostic parameters beyond those utilized in the current version of the staging system into (web based) prognostic models/clinical tools will likely facilitate more personalized prognostic estimates. Evaluation of molecular markers of prognosis is an active area of current research; however, additional data are needed before it would be appropriate to recommend use of such tests in routine clinical practice.
Unveiling the tumor immune microenvironment of organ-specific melanoma metastatic sites
BackgroundThe liver is a known site of resistance to immunotherapy and the presence of liver metastases is associated with shorter progression-free and overall survival (OS) in melanoma, while lung metastases have been associated with a more favorable outcome. There are limited data available regarding the immune microenvironment at different anatomical sites of melanoma metastases. This study sought to characterize and compare the tumor immune microenvironment of liver, brain, lung, subcutaneous (subcut) as well as lymph node (LN) melanoma metastases.MethodsWe analyzed OS in 1924 systemic treatment-naïve patients with AJCC (American Joint Committee on Cancer) stage IV melanoma with a solitary site of organ metastasis. In an independent cohort we analyzed and compared immune cell densities, subpopulations and spatial distribution in tissue from liver, lung, brain, LN or subcut sites from 130 patients with stage IV melanoma.ResultsPatients with only liver, brain or bone metastases had shorter OS compared to those with lung, LN or subcutaneous and soft tissue metastases. Liver and brain metastases had significantly lower T-cell infiltration than lung (p=0.0116 and p=0.0252, respectively) and LN metastases (p=0.0116 and p=0.0252, respectively). T cells were further away from melanoma cells in liver than lung metastases (p=0.0335). Liver metastases displayed unique T-cell profiles, with a significantly lower proportion of programmed cell death protein-1+ T cells compared to all other anatomical sites (p<0.05), and a higher proportion of TIM-3+ T cells compared to LN (p=0.0004), subcut (p=0.0082) and brain (p=0.0128) metastases. Brain metastases had a lower macrophage density than subcut (p=0.0105), liver (p=0.0095) and lung (p<0.0001) metastases. Lung metastases had the highest proportion of programmed death ligand-1+ macrophages of the total macrophage population, significantly higher than brain (p<0.0001) and liver metastases (p=0.0392).ConclusionsLiver and brain melanoma metastases have a significantly reduced immune infiltrate than lung, subcut and LN metastases, which may account for poorer prognosis and reduced immunotherapy response rates in patients with liver or brain metastases. Increased TIM-3 expression in liver metastases suggests TIM-3 inhibitor therapy as a potential therapeutic opportunity to improve patient outcomes.
Clinicopathological characteristics and management of colitis with anti-PD1 immunotherapy alone or in combination with ipilimumab
BackgroundColitis is one of the common immune-related adverse events that leads to morbidity and treatment discontinuation of immunotherapy. The clinical presentation, endoscopic and histopathological features and best management of this toxicity are not well defined.Patients and methodsPatients with metastatic melanoma who received immunotherapy (programmed cell death protein 1 (PD1) antibodies, alone or in combination with a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody (PD1 +CTLA-4)) and who developed clinically significant colitis (requiring systemic corticosteroids) were identified retrospectively from two academic centers. Clinical data were collected for all patients; endoscopic and histopathological data were examined in a subset.ResultsFrom May 2013 to May 2019, 118/1507 (7.8%) patients developed significant colitis; 80/553 (14.5%) after PD1+CTLA-4, 35/1000 (3.5%) PD1 alone, and three patients after Ipilimumab (IPI) alone. Combination therapy-induced colitis was more frequent (14.5% vs 3.5% in PD1 alone, p=<0.0001), had an earlier onset (6.3 weeks vs 25.7 weeks, p=<0.001), was more severe (grade 3/4 69% vs 31%, p=<0.001), and are more likely to require higher doses of steroids (91% vs 74%, p=0.01) than PD1 colitis. Among all patients treated with steroids (N=114), 54 (47%) responded and required no further therapy (steroid sensitive), 47 patients (41%) responded to infliximab (infliximab sensitive), and 13 (11%) were infliximab refractory and needed further immunosuppressive drugs. Infliximab-refractory patients all had onset within 4 weeks of immunotherapy commencement and were more likely to have an underlying autoimmune disease, have higher grade colitis, and require longer immunosuppression, yet had similar response and survival than other patients with colitis. Of 43 (37%) patients re-resumed treatment with PD1 monotherapy after colitis resolution, 16 (37%) of whom developed recurrent colitis. Endoscopic and histopathologic data were available for 64 patients. Most had left-sided colitis, with an increase in chronic inflammatory cells and neutrophils within the lamina propria, an increase in neutrophils in the surface epithelium, without increased lymphocytes or increased eosinophils. Infliximab-refractory colitis had a trend towards more confluent pancolitis with edema, erythema, ulceration, and absent vascularity with neutrophilic infiltration and erosion.ConclusionClinically significant colitis varies in presentation, response to immunosuppression, and endoscopic/histologic features depending on the immunotherapy type. Infliximab-refractory colitis occurs early, is often high grade, and has adverse endoscopic and histopathologic features
Replacement and desmoplastic histopathological growth patterns in cutaneous melanoma liver metastases: frequency, characteristics, and robust prognostic value
Among visceral metastatic sites, cutaneous melanoma (CM) metastasises initially to the liver in ~14–20% of cases. Liver metastases in CM patients are associated with both poor prognosis and poor response to immunotherapy. Histopathological growth patterns (HGPs) of liver metastases of the replacement and desmoplastic type, particularly from colorectal cancer and uveal melanoma (UM), may impart valuable biological and prognostic information. Here, we have studied HGP in 43 CM liver metastases resected from 42 CM patients along with other prognostic factors from three institutions. The HGPs (replacement, desmoplastic, pushing) were scored at the metastasis–liver interface with two algorithms: (1) 100% desmoplastic growth pattern (dHGP) and any (≥1%) replacement pattern (any‐rHGP) and (2) >50% dHGP, >50% rHGP or mixed (<50% dHGP and/or rHGP, pushing HGP). For 1 patient with 2 metastases, an average was taken to obtain 1 final HGP yielding 42 observations from 42 patients. 22 cases (52%) had 100% dHGP whereas 20 (48%) had any replacement. Cases with rHGP demonstrated vascular co‐option/angiotropism. With the development of liver metastasis, only rHGP (both algorithms), male gender and positive resection margins predicted diminished overall survival (p = 0.00099 and p = 0.0015; p = 0.034 and p = 0.024 respectively). On multivariate analysis, only HGP remained significant. 7 of 42 (17%) patients were alive with disease and 21 (50%) died with follow‐up after liver metastases ranging from 1.8 to 42.2 months (mean: 20.4 months, median: 19.0 months). 14 (33%) patients with previously‐treated metastatic disease had no evidence of disease at last follow up. In conclusion, we report for the first time replacement and desmoplastic HGPs in CM liver metastases and their prognostic value, as in UM and other solid cancers. Of particular importance, any rHGP significantly predicted diminished overall survival while 100% dHGP correlated with increased survival. These results contribute to a better understanding of the biology of CM liver metastases and potentially may be utilised in managing patients with these metastases.
Unexpected UVR and non-UVR mutation burden in some acral and cutaneous melanomas
Ultraviolet radiation (UVR) mutagenesis causes nearly all cutaneous melanomas, however, since UVR signatures are largely absent in acral melanoma, as well as melanoma in sun-protected sites, the cause of these melanomas is unknown. Whole-genome sequencing data generated as part of the Australian Melanoma Genome Project was supplemented with a detailed histopathological assessment with the melanomas then classified as UVR or non-UVR related, based on their mutation signatures. The clinicopathological characteristics of melanomas with mutation signatures for their subtype were compared. Three (of 35=8.6%) acral melanomas, all clinically and pathologically verified as arising from acral or subungual locations, had predominant UVR mutation burden, whereas four (of 140=2.9%) cutaneous melanomas showed predominant non-UVR mutations. Among the acral melanomas, the few that were UVR dominant occurred in younger patients, had a higher mutation load and a proportion of mutation burden due to UVR, which was similar to that in melanomas from intermittently UVR-exposed skin. Acral melanomas with a UVR signature occurred most frequently in subungual sites and included tumors harboring BRAF or NF1 mutations. Cutaneous melanomas dominated by non-UVR signatures had lower mutation burdens counts and their primary tumors were thicker and had more mitoses than in other cutaneous melanomas. No histopathological features predicted UVR dominance in acral melanomas or non-UVR dominance in cutaneous melanomas. Our finding of acral/subungual melanomas with predominant UVR mutagenesis suggests that the nail plate and acral skin do not provide complete protection from UVR. Our data also confirm that cutaneous melanomas not caused by UVR are infrequent. Identifying where mutation burden is discordant with primary tumor anatomical site is likely to be clinically significant when determining treatment options for metastatic acral and cutaneous melanoma patients.
Road to Metastasis: The TWEAK Pathway as a Discriminant between Metastasizing and Non-Metastasizing Thick Melanomas
Cutaneous melanoma (CM) is the most aggressive form of skin cancer, and its worldwide incidence is rapidly increasing. Early stages can be successfully treated by surgery, but once metastasis has occurred, the prognosis is poor. However, some 5–10% of thick (≥2 mm) melanomas do not follow this scenario and run an unpredictable course. Little is known about the factors that contribute to metastasis in some patient with thick melanomas and the lack thereof in thick melanoma patients who never develop metastatic disease. We were therefore interested to study differential gene expression and pathway analysis and compare non-metastatic and metastatic thick melanomas. We found that the TNF-like weak inducer of apoptosis (TWEAK) pathway was upregulated in thick non-metastasizing melanomas. MAP3K14 (NIK1), BIRC2 (cIAP1), RIPK1, CASP7, CASP8, and TNF play an important role in inhibiting proliferation and invasion of tumor cells via the activation of the non-canonical NF-κB signaling pathway. In particular, this pathway sensitizes melanoma cells to TNF-alpha and activates the apoptosis module of the TWEAK pathway in thick non-metastasizing melanomas. Hence, our study suggests a potential role of the TWEAK pathway in inhibiting thick melanoma from metastasis. Exploitation of these genes and the pathway they control may open future therapeutic avenues.
COPI Activity Coupled with Fatty Acid Biosynthesis Is Required for Viral Replication
During infection by diverse viral families, RNA replication occurs on the surface of virally induced cytoplasmic membranes of cellular origin. How this process is regulated, and which cellular factors are required, has been unclear. Moreover, the host-pathogen interactions that facilitate the formation of this new compartment might represent critical determinants of viral pathogenesis, and their elucidation may lead to novel insights into the coordination of vesicular trafficking events during infection. Here we show that in Drosophila cells, Drosophila C virus remodels the Golgi apparatus and forms a novel vesicular compartment, on the surface of which viral RNA replication takes place. Using genome-wide RNA interference screening, we found that this step in the viral lifecycle requires at least two host encoded pathways: the coat protein complex I (COPI) coatamer and fatty acid biosynthesis. Our results integrate, clarify, and extend numerous observations concerning the cell biology of viral replication, allowing us to conclude that the coupling of new cellular membrane formation with the budding of these vesicles from the Golgi apparatus allows for the regulated generation of this new virogenic organelle, which is essential for viral replication. Additionally, because these pathways are also limiting in flies and in human cells infected with the related RNA virus poliovirus, they may represent novel targets for antiviral therapies.