Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
88
result(s) for
"Ray, Prabir"
Sort by:
Neutrophils and lymphopenia, an unknown axis in severe COVID-19 disease
2021
The Coronavirus Disease 2019 (COVID-19) is caused by the betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus that can mediate asymptomatic or fatal infections characterized by pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. Several studies have highlighted the importance of B and T lymphocytes, given that neutralizing antibodies and T cell responses are required for an effective immunity. In addition, other reports have described myeloid cells such as macrophages and monocytes play a major role in the immunity against SARS-CoV-2 as well as dysregulated pro-inflammatory signature that characterizes severe COVID-19. During COVID-19, neutrophils have been defined as a heterogeneous group of cells, functionally linked to severe inflammation and thrombosis triggered by degranulation and NETosis, but also to suppressive phenotypes. The physiological role of suppressive neutrophils during COVID-19 and their implications in severe disease have been poorly studied and is not well understood. Here, we discuss the current evidence regarding the role of neutrophils with suppressive properties such as granulocytic myeloid-derived suppressor cells (G-MDSCs) and their possible role in suppressing CD4 + and CD8 + T lymphocytes expansion and giving rise to lymphopenia in severe COVID-19 infection.
Journal Article
The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia
by
Chakraborty, Krishnendu
,
Kagan, Valerian E.
,
St. Croix, Claudette M.
in
13/95
,
631/250
,
64/60
2017
Bacterial pneumonia is a significant healthcare burden worldwide. Failure to resolve inflammation after infection precipitates lung injury and an increase in morbidity and mortality. Gram-negative bacteria are common in pneumonia and increased levels of the mito-damage-associated molecular pattern (DAMP) cardiolipin can be detected in the lungs. Here we show that mice infected with
Klebsiella pneumoniae
develop lung injury with accumulation of cardiolipin. Cardiolipin inhibits resolution of inflammation by suppressing production of anti-inflammatory IL-10 by lung CD11b
+
Ly6G
int
Ly6C
lo
F4/80
+
cells. Cardiolipin induces PPARγ SUMOylation, which causes recruitment of a repressive NCOR/HDAC3 complex to the IL-10 promoter, but not the TNF promoter, thereby tipping the balance towards inflammation rather than resolution. Inhibition of HDAC activity by sodium butyrate enhances recruitment of acetylated histone 3 to the IL-10 promoter and increases the concentration of IL-10 in the lungs. These findings identify a mechanism of persistent inflammation during pneumonia and indicate the potential of HDAC inhibition as a therapy.
Non-resolving bacterial pneumonia results in lung tissue damage owing to overactive inflammation. Here the authors show that the mitochondrial DAMP cardiolipin contributes to persistent inflammation by SUMOylating PPARγ, which promotes binding of the corepressor NCOR/HDAC3 complex to the IL-10 promoter.
Journal Article
Inhibition and Role of let-7d in Idiopathic Pulmonary Fibrosis
by
Konishi, Kazuhisa
,
Yousef, Hanadie
,
Ben-Yehudah, Ahmi
in
Actins - metabolism
,
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
,
Animals
2010
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal fibrotic lung disease characterized by profound changes in epithelial cell phenotype and fibroblast proliferation.
To determine changes in expression and role of microRNAs in IPF.
RNA from 10 control and 10 IPF tissues was hybridized on Agilent microRNA microarrays and results were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. SMAD3 binding to the let-7d promoter was confirmed by chromatin immunoprecipitation, electrophoretic mobility shift assay, luciferase assays, and reduced expression of let-7d in response to transforming growth factor-beta. HMGA2, a let-7d target, was localized by immunohistochemistry. In mice, let-7d was inhibited by intratracheal administration of a let-7d antagomir and its effects were determined by immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, and morphometry.
Eighteen microRNAs including let-7d were significantly decreased in IPF. Transforming growth factor-beta down-regulated let-7d expression, and SMAD3 binding to the let-7d promoter was demonstrated. Inhibition of let-7d caused increases in mesenchymal markers N-cadherin-2, vimentin, and alpha-smooth muscle actin (ACTA2) as well as HMGA2 in multiple epithelial cell lines. let-7d was significantly reduced in IPF lungs and the number of epithelial cells expressing let-7d correlated with pulmonary functions. HMGA2 was increased in alveolar epithelial cells of IPF lungs. let-7d inhibition in vivo caused alveolar septal thickening and increases in collagen, ACTA2, and S100A4 expression in SFTPC (pulmonary-associated surfactant protein C) expressing alveolar epithelial cells.
Our results indicate a role for microRNAs in IPF. The down-regulation of let-7d in IPF and the profibrotic effects of this down-regulation in vitro and in vivo suggest a key regulatory role for this microRNA in preventing lung fibrosis. Clinical trial registered with www.clinicaltrials.gov (NCT 00258544).
Journal Article
Neutrophils and galectin-3 defend mice from lethal bacterial infection and humans from acute respiratory failure
2024
Respiratory infection by
Pseudomonas aeruginosa
, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host’s immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by
P. aeruginosa
. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed
Lgals3
, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.
This study reports training by lipopolysaccharide to expand neutrophils expressing the anti-bacterial galectin-3 protein defending mice from a lethal bacterial infection, a similar signature associated with survivors of respiratory failure in humans.
Journal Article
Targeted degradation of extracellular mitochondrial aspartyl-tRNA synthetase modulates immune responses
2024
The severity of bacterial pneumonia can be worsened by impaired innate immunity resulting in ineffective pathogen clearance. We describe a mitochondrial protein, aspartyl-tRNA synthetase (DARS2), which is released in circulation during bacterial pneumonia in humans and displays intrinsic innate immune properties and cellular repair properties. DARS2 interacts with a bacterial-induced ubiquitin E3 ligase subunit, FBXO24, which targets the synthetase for ubiquitylation and degradation, a process that is inhibited by DARS2 acetylation. During experimental pneumonia, Fbxo24 knockout mice exhibit elevated DARS2 levels with an increase in pulmonary cellular and cytokine levels. In silico modeling identified an FBXO24 inhibitory compound with immunostimulatory properties which extended DARS2 lifespan in cells. Here, we show a unique biological role for an extracellular, mitochondrially derived enzyme and its molecular control by the ubiquitin apparatus, which may serve as a mechanistic platform to enhance protective host immunity through small molecule discovery.
Here, Johnson et al show that bacterial pneumonia induces an interaction between the ubiquitin E3 ligase subunit FBX024 and the mitochondrial protein DARS2 to modulate host immune responses.
Journal Article
Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome
by
Bain, William
,
Mallampalli, Rama K.
,
Wendell, Stacy G.
in
Acetyl-L-carnitine
,
Acetylcarnitine
,
Acute respiratory distress syndrome
2023
Background
Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure.
Methods
In a nested case–control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data.
Results
Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (
P
= 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (
P
= 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (
P
= 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (
P
= 0.0001 and
P
= 0.28, respectively).
Conclusions
This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.
Journal Article
Epithelial eotaxin-2 and eotaxin-3 expression: relation to asthma severity, luminal eosinophilia and age at onset
by
Naik, Chetan
,
Holguin, Fernando
,
Trudeau, John B
in
Adrenal Cortex Hormones - pharmacology
,
Adult
,
Age of Onset
2012
Eosinophilic inflammation is implicated in asthma. Eotaxin 1-3 regulate eosinophil trafficking into the airways along with other chemotactic factors. However, the epithelial and bronchoalveolar lavage (BAL) cell expression of these chemokines in relation to asthma severity and eosinophilic phenotypes has not been addressed.
To measure the expression of the three eotaxin isoforms in bronchoscopically obtained samples and compare them with clinically relevant parameters between normal subjects and patients with asthma.
Normal subjects and patients with asthma of varying severity recruited through the Severe Asthma Research Program underwent clinical assessment and bronchoscopy with airway brushing and BAL. Eotaxin 1-3 mRNA/protein were measured in epithelial and BAL cells and compared with asthma severity, control and eosinophilic inflammation.
Eotaxin-2 and eotaxin-3 mRNA and eotaxin-2 protein were increased in airway epithelial brushings from patients with asthma and were highest in cases of severe asthma (p values 0.0155, 0.0033 and 0.0006, respectively), with eotaxin-2 protein increased with age at onset. BAL cells normally expressed high levels of eotaxin-2 mRNA/protein but BAL fluid levels of eotaxin-2 were lowest in severe asthma. Epithelial eotaxin-2 and eotaxin-3 mRNA/protein was associated with sputum eosinophilia, lower forced expiratory volume in 1 s and more asthma exacerbations. Airway epithelial cell eotaxin-2 protein differed by asthma severity only in those with late onset disease, and tended to be highest in those with late onset eosinophilic asthma.
Epithelial eotaxin-2 and 3 are increased in asthma and severe asthma. Their expression may contribute to luminal migration of eosinophils, especially in later onset disease, asthma control and severity.
Journal Article
Hepatocyte Growth Factor Inhibits Epithelial to Myofibroblast Transition in Lung Cells via Smad7
by
Shukla, Manasi N
,
Ray, Prabir
,
Ray, Rabindranath
in
Actins - metabolism
,
Animals
,
Bleomycin - pharmacology
2009
Idiopathic pulmonary fibrosis is a lethal parenchymal lung disease characterized by denudation of the lung epithelium, fibroblast proliferation, and collagen deposition. Cellular changes underlying disease progression involve injury to alveolar epithelial cells, epithelial to mesenchymal transition, proliferation of alpha-smooth muscle actin (alpha-SMA)-expressing myofibroblasts and of fibroblasts resulting in enhanced deposition of extracellular matrix proteins. Hepatocyte growth factor (HGF) inhibits progression of bleomycin-induced pulmonary fibrosis in mice. The mechanism underlying the inhibitory effect of HGF was investigated in an in vitro model. We show that HGF markedly antagonizes basal and transforming growth factor (TGF)-beta-induced expression of myofibroblast markers such as alpha-SMA, collagen type 1, and fibronectin in rat alveolar epithelial cells. HGF also inhibited TGF-beta-induced alpha-SMA expression in primary murine alveolar epithelial cells. Since TGF-beta is known to regulate alpha-SMA expression, the effect of HGF on components of TGF-beta signaling was investigated. HGF induced expression of Smad7, an inhibitor of TGF-beta signaling, in a mitogen-activated protein kinase-dependent manner. HGF also induced the nuclear export of Smad7 and Smad ubiquitin regulatory factor 1 (Smurf1) to the cytoplasm. HGF-dependent decrease in alpha-SMA was abolished with specific siRNAs targeted to Smad7. Thus, induction of Smad7 by HGF serves to limit acquisition of the myofibroblast phenotype in alveolar epithelial cells.
Journal Article
TNF-α from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection
by
Fei, Mingjian
,
Saijo, Shinobu
,
Oriss, Timothy B.
in
animal models
,
Animals
,
Antigens, CD - immunology
2011
Aspergillus fumigatus is commonly associated with allergic bronchopulmonary aspergillosis in patients with severe asthma in which chronic airway neutrophilia predicts a poor outcome. We were able to recapitulate fungus-induced neutrophilic airway inflammation in a mouse model in our efforts to understand the underlying mechanisms. However, neutrophilia occurred in a mouse strain-selective fashion, providing us with an opportunity to perform a comparative study to elucidate the mechanisms involved. Here we show that TNF-α, largely produced by Ly6c⁺CD11b⁺ dendritic cells (DCs), plays a central role in promoting IL-17A from CD4⁺ T cells and collaborating with it to induce airway neutrophilia. Compared with C57BL/6 mice, BALB/c mice displayed significantly more TNF-α-producing DCs and macrophages in the lung. Lung TNF-α levels were drastically reduced in CD11c-DTR BALB/c mice depleted of CD11c+cells, and TNF-⁺-producing Ly6c⁺CD11b⁺ cells were abolished in Dectin-1 -/- and MyD88 -/- BALB/c mice. TNF-α deficiency itself blunted accumulation of inflammatory Ly6c⁺CD11b⁺ DCs. Also, lack of TNF-α decreased IL-17A but promoted IL-5 levels, switching inflammation from a neutrophil to eosinophil bias resembling that in C57BL/6 mice. The TNF-α low DCs in C57BL/6 mice contained more NF-қB p50 homodimers, which are strong repressors of TNF-α transcription. Functionally, collaboration between TNF-α and IL-17A triggered significantly higher levels of the neutrophil chemoattractants keratinocyte cytokine and macrophage inflammatory protein 2 in BALB/c mice. Our study identifies TNF-α as a molecular switch that orchestrates a sequence of events in DCs and CD4 T cells that promote neutrophilic airway inflammation.
Journal Article