Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Raychaudhuri, Deblina"
Sort by:
Lactate Induces Pro-tumor Reprogramming in Intratumoral Plasmacytoid Dendritic Cells
Plasmacytoid dendritic cells are the most efficient producers of type I interferons, viz. IFNα, in the body and thus have the ability to influence anti-tumor immune responses. But repression of effective intra-tumoral pDC activation is a key immuno-evasion strategy exhibited in tumors-tumor-recruited pDCs are rendered \"tolerogenic,\" characterized by deficiency in IFNα induction and ability to expand regulatory T cells . But the tumor-derived factors that drive this functional reprogramming of intra-tumoral pDCs are not established. In this study we aimed at exploring if intra-tumoral abundance of the oncometabolite lactate influences intra-tumoral pDC function. We found that lactate attenuates IFNα induction by pDCs mediated by intracellular Ca mobilization triggered by cell surface GPR81 receptor as well as directly by cytosolic import of lactate in pDCs through the cell surface monocarboxylate transporters, affecting cellular metabolism needed for effective pDC activation. We also found that lactate enhances tryptophan metabolism and kynurenine production by pDCs which contribute to induction of FoxP3 CD4 regulatory T cells, the major immunosuppressive immune cell subset in tumor microenvironment. We validated these mechanisms of lactate-driven pDC reprogramming by looking into tumor recruited pDCs isolated from patients with breast cancers as well as in a preclinical model of breast cancer in mice. Thus, we discovered a hitherto unknown link between intra-tumoral abundance of an oncometabolite resulting from metabolic adaptation in cancer cells and the pro-tumor tolerogenic function of tumor-recruited pDCs, revealing new therapeutic targets for potentiating anti-cancer immune responses.
Myeloid cell-targeted therapies for solid tumours
Myeloid cells are the most abundant immune components of the tumour microenvironment, where they have a variety of functions, ranging from immunosuppressive to immunostimulatory roles. The myeloid cell compartment comprises many different cell types, including monocytes, macrophages, dendritic cells and granulocytes, that are highly plastic and can differentiate into diverse phenotypes depending on cues received from their microenvironment. In the past few decades, we have gained a better appreciation of the complexity of myeloid cell subsets and how they are involved in tumour progression and resistance to cancer therapies, including immunotherapy. In this Review, we highlight key features of monocyte and macrophage biology that are being explored as potential targets for cancer therapies and what aspects of myeloid cells need a deeper understanding to identify rational combinatorial strategies to improve clinical outcomes of patients with cancer. We discuss therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators. We also describe advances in the development of genetically engineered myeloid cells for cancer therapy.Myeloid cells contribute to the immunosuppressive tumour microenvironment and can be responsible for resistance to cancer immunotherapy. Here, the authors describe the current therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators.
Circulating Interleukin-8 Dynamics Parallels Disease Course and Is Linked to Clinical Outcomes in Severe COVID-19
Severe COVID-19 frequently features a systemic deluge of cytokines. Circulating cytokines that can stratify risks are useful for more effective triage and management. Here, we ran a machine-learning algorithm on a dataset of 36 plasma cytokines in a cohort of severe COVID-19 to identify cytokine/s useful for describing the dynamic clinical state in multiple regression analysis. We performed RNA-sequencing of circulating blood cells collected at different time-points. From a Bayesian Information Criterion analysis, a combination of interleukin-8 (IL-8), Eotaxin, and Interferon-γ (IFNγ) was found to be significantly linked to blood oxygenation over seven days. Individually testing the cytokines in receiver operator characteristics analyses identified IL-8 as a strong stratifier for clinical outcomes. Circulating IL-8 dynamics paralleled disease course. We also revealed key transitions in immune transcriptome in patients stratified for circulating IL-8 at three time-points. The study identifies plasma IL-8 as a key pathogenic cytokine linking systemic hyper-inflammation to the clinical outcomes in COVID-19.
Plasma Gradient of Soluble Urokinase-Type Plasminogen Activator Receptor Is Linked to Pathogenic Plasma Proteome and Immune Transcriptome and Stratifies Outcomes in Severe COVID-19
Disease caused by SARS-CoV-2 coronavirus (COVID-19) led to significant morbidity and mortality worldwide. A systemic hyper-inflammation characterizes severe COVID-19 disease, often associated with acute respiratory distress syndrome (ARDS). Blood biomarkers capable of risk stratification are of great importance in effective triage and critical care of severe COVID-19 patients. Flow cytometry and next-generation sequencing were done on peripheral blood cells and urokinase-type plasminogen activator receptor (suPAR), and cytokines were measured from and mass spectrometry-based proteomics was done on plasma samples from an Indian cohort of COVID-19 patients. Publicly available single-cell RNA sequencing data were analyzed for validation of primary data. Statistical analyses were performed to validate risk stratification. We report here higher plasma abundance of suPAR, expressed by an abnormally expanded myeloid cell population, in severe COVID-19 patients with ARDS. The plasma suPAR level was found to be linked to a characteristic plasma proteome, associated with coagulation disorders and complement activation. Receiver operator characteristic curve analysis to predict mortality identified a cutoff value of suPAR at 1,996.809 pg/ml (odds ratio: 2.9286, 95% confidence interval 1.0427–8.2257). Lower-than-cutoff suPAR levels were associated with a differential expression of the immune transcriptome as well as favorable clinical outcomes, in terms of both survival benefit (hazard ratio: 0.3615, 95% confidence interval 0.1433–0.912) and faster disease remission in our patient cohort. Thus, we identified suPAR as a key pathogenic circulating molecule linking systemic hyperinflammation to the hypercoagulable state and stratifying clinical outcomes in severe COVID-19 patients with ARDS.
Histone lactylation drives CD8+ T cell metabolism and function
The activation and functional differentiation of CD8 + T cells are linked to metabolic pathways that result in the production of lactate. Lactylation is a lactate-derived histone post-translational modification; however, the relevance of histone lactylation in the context of CD8 + T cell activation and function is not known. Here, we show the enrichment of H3K18 lactylation (H3K18la) and H3K9 lactylation (H3K9la) in human and mouse CD8 + T cells, which act as transcription initiators of key genes regulating CD8 + T cell function. Further, we note distinct patterns of H3K18la and H3K9la in CD8 + T cell subsets linked to their specific metabolic profiles. Additionally, we find that modulation of H3K18la and H3K9la by targeting metabolic and epigenetic pathways influence CD8 + T cell effector function, including antitumor immunity, in preclinical models. Overall, our study uncovers the potential roles of H3K18la and H3K9la in CD8 + T cells. Goswami and colleagues describe how lactylation of histone lysine residues regulates the transcriptome, metabolism and function of CD8 + T cells.
Loss of KDM6A-mediated genomic instability and metabolic reprogramming regulates response to therapeutic perturbations in bladder cancer
Mutations in epigenetic regulators are common in bladder cancer, yet their impact on therapeutic responses remains unclear. Here, we identify that loss-of-function mutations in KDM6A, a histone demethylase altered in about 26% of advanced bladder cancers, are associated with poor survival after cisplatin chemotherapy, whereas they correlate with improved outcomes with anti-PD-1 therapy. Using CRISPR-Cas9-engineered murine and human bladder cancer models, we show that KDM6A deficiency increases formation of extrachromosomal circular DNA carrying chemoresistance loci, promoting cisplatin resistance. In parallel, KDM6A loss impairs DNA repair and rewires tumor metabolism, reducing glycolysis and lactate output. This metabolic shift diminishes histone lactylation in regulatory T cells, suppressing immunoregulatory genes and limiting expansion of PD-1 regulatory T cells. Collectively, our findings establish KDM6A mutation as a key regulator of therapeutic responses, providing a foundation for its use in guiding precision therapy in advanced bladder cancer.
A phase 2 single center open label randomised control trial for convalescent plasma therapy in patients with severe COVID-19
A single center open label phase 2 randomised control trial (Clinical Trial Registry of India No. CTRI/2020/05/025209) was done to assess clinical and immunological benefits of passive immunization using convalescent plasma therapy. At the Infectious Diseases and Beleghata General Hospital in Kolkata, India, 80 patients hospitalized with severe COVID-19 disease and fulfilling the inclusion criteria (aged more than 18 years, with either mild ARDS having PaO2/FiO2 200–300 or moderate ARDS having PaO2/FiO2 100–200, not on mechanical ventilation) were recruited and randomized into either standard of care (SOC) arm ( N  = 40) or the convalescent plasma therapy (CPT) arm ( N  = 40). Primary outcomes were all-cause mortality by day 30 of enrolment and immunological correlates of response to therapy if any, for which plasma abundance of a large panel of cytokines was quantitated before and after intervention to assess the effect of CPT on the systemic hyper-inflammation encountered in these patients. The secondary outcomes were recovery from ARDS and time taken to negative viral RNA PCR as well as to report any adverse reaction to plasma therapy. Transfused convalescent plasma was characterized in terms of its neutralizing antibody content as well as proteome. The trial was completed and it was found that primary outcome of all-cause mortality was not significantly different among severe COVID-19 patients with ARDS randomized to two treatment arms (Mantel-Haenszel Hazard Ratio 0.6731, 95% confidence interval 0.3010-1.505, with a P value of 0.3424 on Mantel-Cox Log-rank test). No adverse effect was reported with CPT. In severe COVID-19 patients with mild or moderate ARDS no significant clinical benefit was registered in this clinical trial with convalescent plasma therapy in terms of prespecified outcomes. Convalescent plasma therapy (CPT) is used to treat patients with Covid-19, but evidence for clinical benefit from clinical trials is divergent. Here the authors report in that CPT treatment does not affect mortality in patients with severe Covid-19 in phase 2 single center open label randomised controlled trial.
Myeloid-specific KDM6B inhibition sensitizes glioblastoma to PD1 blockade
Glioblastoma (GBM) tumors are enriched in immune-suppressive myeloid cells and are refractory to immune checkpoint therapy (ICT). Targeting epigenetic pathways to reprogram the functional phenotype of immune-suppressive myeloid cells to overcome resistance to ICT remains unexplored. Single-cell and spatial transcriptomic analyses of human GBM tumors demonstrated high expression of an epigenetic enzyme-histone 3 lysine 27 demethylase (KDM6B)-in intratumoral immune-suppressive myeloid cell subsets. Importantly, myeloid cell-specific Kdm6b deletion enhanced proinflammatory pathways and improved survival in GBM tumor-bearing mice. Mechanistic studies showed that the absence of Kdm6b enhances antigen presentation, interferon response and phagocytosis in myeloid cells by inhibition of mediators of immune suppression including Mafb, Socs3 and Sirpa. Further, pharmacological inhibition of KDM6B mirrored the functional phenotype of Kdm6b-deleted myeloid cells and enhanced anti-PD1 efficacy. This study thus identified KDM6B as an epigenetic regulator of the functional phenotype of myeloid cell subsets and a potential therapeutic target for enhanced response to ICT.
Histone Lactylation Drives CD8 T Cell Metabolism and Function
The activation and functional differentiation of CD8 T cells are linked to metabolic pathways that result in the production of lactate. Lactylation is a lactate-derived histone post-translational modification (hPTM); however, the relevance of histone lactylation in the context of CD8 T cell activation and function is not known. Here, we show the enrichment of H3K18-lactylation (H3K18la) and H3K9-lactylation (H3K9la) in human and murine CD8 T cells which act as transcription initiators of key genes regulating CD8 T cell phenotype and function. Further, we note distinct impacts of H3K18la and H3K9la on CD8 T cell subsets linked to their specific metabolic profiles. Importantly, we demonstrate that modulation of H3K18la and H3K9la by targeting metabolic and epigenetic pathways regulates CD8 T cell effector function including anti-tumor immunity in preclinical models. Overall, our study uncovers the unique contributions of H3K18la and H3K9la in modulating CD8 T cell phenotype and function intricately associated with metabolic state.
Spatio-temporal regulation of ligand trafficking and TLR9 activation involves PIEZO1 mechanosensing in human plasmacytoid dendritic cells
Plasmacytoid dendritic cells (pDCs) are specialized innate immune cells which play a pivotal role in antiviral immunity by producing large quantities of type I interferons (IFNs) upon sensing nucleic acids via Toll-like receptor 9 (TLR9). Synthetic oligodeoxynucleotides (ODNs) such as CpGA and CpGB, both containing unmethylated CpG motifs, are commonly used experimental TLR9 agonists. Interestingly, CpGA and CpGB elicit markedly different responses in pDCs – CpGA induces robust IFN-α production, whereas CpGB does not. The mechanistic basis underlying this ligand-specific functional divergence has remained unclear. Here, we identify PIEZO1, a mechanosensory ion channel, as a critical determinant of ligand-specific IFN responses in human primary pDCs. We demonstrate that unlike CpGB, CpGA self-associates into larger aggregates that generate membrane tension during cellular uptake, leading to activation of PIEZO1. This activation triggers localized calcium influx and cytoskeletal remodeling, resulting in the formation of local F-actin structures that retain CpGA within early endosomes enabling sustained IRF7 nuclear translocation and robust type I IFN production. Disruption of PIEZO1 or actin polymerization abrogates CpGA-induced IFN production, while pharmacological activation of Piezo1 enhances IFN production in response to CpGB. Thus, these findings uncover a previously unrecognized biophysical checkpoint in nucleic acid sensing, wherein membrane tension is transduced via PIEZO1 into spatially controlled TLR9 signaling. Overall, our study establishes PIEZO1 mechanosensing at the plasma membrane as a key regulatory event in nucleic acid-induced immunity, with different functional outcomes based on the cargo structure, opening potential new avenues for modulating type I IFN responses in infection and autoimmunity.