Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
146 result(s) for "Razak, Suhail"
Sort by:
Exploring the prognostic significance of PKCε variants in cervical cancer
Background Protein Kinase C-epsilon (PKCε) is a member of the novel subfamily of PKCs (nPKCs) that plays a role in cancer development. Studies have revealed that its elevated expression levels are associated with cervical cancer. Previously, we identified pathogenic variations in its different domains through various bioinformatics tools and molecular dynamic simulation. In the present study, the aim was to find the association of its variants rs1553369874 and rs1345511001 with cervical cancer and to determine the influence of these variants on the protein-protein interactions of PKCε, which can lead towards cancer development and poor survival rates. Methods The association of the variants with cervical cancer and its clinicopathological features was determined through genotyping analysis. Odds ratio and relative risk along with Fisher exact test were calculated to evaluate variants significance and disease risk. Protein-protein docking was performed and docked complexes were subjected to molecular dynamics simulation to gauge the variants impact on PKCε’s molecular interactions. Results This study revealed that genetic variants rs1553369874 and rs1345511001 were associated with cervical cancer. Smad3 interacts with PKCε and this interaction promotes cervical cancer angiogenesis; therefore, Smad3 was selected for protein-protein docking. The analysis revealed PKCε variants promoted aberrant interactions with Smad3 that might lead to the activation of oncogenic pathways. The data obtained from this study suggested the prognostic significance of PRKCE gene variants rs1553369874 and rs1345511001. Conclusion Through further in vitro and in vivo validation, these variants can be used at the clinical level as novel prognostic markers and therapeutic targets against cervical cancer.
Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/ β -catenin signaling pathway
New approaches for the prevention of colon cancer perseveres an essential necessity. Though, resistance to existing chemo-preventive drugs is moderately predominant in colon carcinogenesis. Taxifolin (dihydroquercetin) is a flavononol, have shown virile biological activities against few cancers. The current study was designed to investigate and equate antitumor activity of Taxifolin (TAX) in colorectal cancer cell lines and in HCT116 xenograft model in a comprehensive approach. Two human colorectal cancer cell lines HCT116 and HT29, were used. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazoliumbromide (MMT) protocol was performed to elucidate the impact of TAX and β- catenin inhibitor (FH535) on the viability of HCT116 and HT29 cell lines. Apoptosis /cell cycle assay was performed. Data interpretation was done with a FACScan (Becton Dickinson, NJ). About 1 × 10 cells per sample were harvested. Histograms of DNA were analyzed with ModiFitLT software (verity Software House, ME, USA). Western blotting and RT-PCR were performed for protein and gene expression respectively in in vitro and in vivo. We found that TAX induced cytotoxicity in colorectal cells in a dose-dependent manner and time dependent approach. Further, our data validated that administration of TAX to human colorectal cancer HCT116 and HT29 cells resulted in cell growth arrest, variation in molecules controlling cell cycle operative in the G2 phase of the cell cycle and apoptosis in a concentration dependent approach. Further our results concluded that TAX administration decreases expression of β-catenin gene, AKT gene and Survivin gene and protein expression in in vitro and in vivo. Our findings proposed that targeting β-catenin gene may encourage the alterations of cell cycle and cell cycle regulators. Wnt/β-catenin signaling pathway possibly takes part in the genesis and progression of colorectal cancer cells through regulating cell cycle and the expression of cell cycle regulators.
Acacia hydaspica ethyl acetate extract protects against cisplatin-induced DNA damage, oxidative stress and testicular injuries in adult male rats
Background Cisplatin (CP), an effective anticancer agent, carries the risk of impairing testicular function leading to infertility. The present study aimed at evaluating the protective effect of A. hydaspica ethyl acetate extract (AHE) against CP-induced oxidative stress and testicular injuries in rats. Methods Rats were divided into six groups ( n  = 6). Group I (control), group II (CP single dose on day 16). Group III received AHE for 21 days. Group IV (CP + AHE; post- treatment group). Group V (AHE + CP; pre-treatment group) and group VI (CP + Sily). Results CP treatment reduced serum testosterone (T), LH and FSH, decreased the activity level of antioxidant enzymes while increased the concentration of oxidative stress markers, i.e. thiobarbituric acid reactive substances (TBARS), H 2 O 2 and nitric oxide (NO) along with corresponding DNA damages. Furthermore, CP induced adverse morphological changes in testis of rats including reduced epithelial height and tubular diameter, increased luminal diameter with impaired spermatogenesis. Pre and post-treatment with AHE reduced the side effects of CP in testis tissues through improvement in the reproductive hormonal secretions, enzymatic activities, histological and DNA damage parameters. Pretreatment seems to be more effective and equivalent to silymarin group in reversing the CP deleterious effects as compared to post-treatment. Conclusion The results demonstrated that A. hydaspica treatment in CP-induced testicular toxicity augments the antioxidants defense mechanism, reverted the level of fertility hormones, suppressed the histomorphological alterations and DNA damages and thus provides the evidence that it may have a therapeutic role in free radical mediated diseases.
Effect of Acacia hydaspica R. Parker extract on lipid peroxidation, antioxidant status, liver function test and histopathology in doxorubicin treated rats
Doxorubicin (DOX) is an anthracycline agent mostly prescribed for various cancers. However, its treatment is contiguous with toxic effects. Acacia hydaspica prevented drug-induced hepatic-toxicity in animals with anti-oxidative mechanisms. We intended to study the efficacy of A. hydaspica ethyl acetate extract (AHE) for inhibiting DOX- induced liver damage. Normal control group received saline; Drug control group received 3 mg/kg b.w. dose of DOX for 6 weeks (single dose/week, intraperitoneal injection) to study the effect of chronic DOX treatment. In co-treatment groups, 200 and 400 mg/kg b.w AHE was given orally for 6 weeks in concomitant with DOX (3 mg/kg b.w, i.p. injection per week). The standard drug group received silyamrin 100 mg/kg b.w (2 doses/week: 12 doses/6 weeks) in conjunction with DOX (single dose/week). Lipid profile, liver function tests (LFTs), antioxidant enzymes, oxidative stress enzymes and morphological alterations were studied to evaluate the hepatoprotective potential of AHE. DOX treatment inhibits body weight gain and upturn liver index. DOX considerably upset serum cholesterol, triglycerides and LDL concentration. On the contrary, it reduced serum HDL amount. DOX induced marked depreciation in serum LFTs, diminish hepatic antioxidant enzymes; however, raised tissue oxidative stress markers accompanied by morphological damages. Co-treatment with AHE dose dependently adjusted DOX-prompted fluctuations in lipid profile, AST, ALP, ALT, total bilirubin, and direct bilirubin concentrations and hepatic weight. Likewise, AHE usage enhanced total protein and hepatic tissue antioxidant enzyme quantities whereas declined oxidative stress markers in hepatic tissue. Correspondingly histopathological examinations aid the biochemical results. The influence of AHE 400 mg/kg b.w dose is analogous to silymarin. Acacia hydaspica possibly serve as adjuvant therapy that hampers DOX inveigled liver damage due to the underlying antioxidant mechanism of secondary metabolites.
Effect of bisphenol F, an analog of bisphenol A, on the reproductive functions of male rats
Objective Bisphenol A (BPA) is a monomer primarily used in the production of polycarbonate plastic and epoxy resins. Bisphenol F (BPF) is apparently the main BPA replacement that is used increasingly. BPF has been detected in canned food, thermal paper receipts, and soft drinks. In the present experiment, we did both in vitro and in vivo studies to evaluate the effect of low and high-dose BPF exposures on testosterone concentration, oxidative stress, and antioxidants activity in reproductive tissues of male rats. Methods Adult (80–90 days old) male Sprague Dawley rats ( n  = 36) obtained from the rodent colony of Animal Sciences Department of Quaid-i-Azam University. The direct effects of BPF on the antioxidant enzymes and testosterone secretion were measured in vitro and in vivo studies. In an in vivo experiment, adult male Sprague Dawley rats ( n  = 42) were exposed to different concentrations of bisphenol F (1, 5, 25, and 50 mg/kg/d) for 28 days. Various biochemical parameters were analyzed including the level of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), reactive oxygen species (ROS), and lipid peroxidation (LPO). Moreover, sperm motility, daily sperm production (DSP), comet assay, and histological analysis were performed. Results In vitro study showed that BPF exposure significantly ( p  < 0.05) induced oxidative stress biomarkers, i.e., ROS and LPO, while it did not change antioxidant enzyme and testicular testosterone concentration. Whereas, an in vivo study revealed that BPF induced dose-dependent effect and high-dose (100 mg/kg) exposure of BPF significantly reduced tissue protein ( p  < 0.05) content, CAT ( p  < 0.001), SOD ( p  < 0.05), and POD ( p  < 0.05) levels while significantly ( p  < 0.05) augmented ROS and lipid peroxidation. Furthermore, BPF reduces testosterone, LH, and FSH secretion in a dose-dependent manner. Significant ( p  < 0.001) reduction in plasma and intra-testicular testosterone, LH, and FSH was noticed at 100 mg/kg BFP dose. High-dose exposure reduces spermatogenesis. Conclusion BPF showed an antagonistic effect on male reproductive hormones and induce alterations in testicular morphology. Increased oxidative stress and decreased testicular antioxidant status might be the underlying mechanism of BFP-induced testicular toxicity.
Acacia hydaspica R. Parker ethyl-acetate extract abrogates cisplatin-induced nephrotoxicity by targeting ROS and inflammatory cytokines
Cisplatin (CisPT) is a chemotherapeutic drug that outcomes in adverse effects. In this study, we examined the effect of A. hydaspica ethyl acetate extract (AHE) in an animal model of cisplatin-induced acute kidney injury (AKI). 36 male Sprague Dawley rats were used in the AKI rat model, and CisPT (7.5 mg/kg BW, i.p) single dose was given. In the pretreatment module, AHE (400 mg/kgBW/day, p.o) was given for 7 days before and after CisPT injection. While in the post-treatment group AHE was administered for 7 days after a single CisPT shot. The standard group received silymarin (100 mg/kg BW, p.o) for 7 days before and after CisPT injection. In HCT 116 tumor xenografts ( n  = 32) two groups of mice were pretreated with 400 mg/kg AHE orally for 7 days and two groups were treated with distilled water. On day 7 of pretreatment one distilled water and one AHE pretreated group were injected i.p with 15 mg/kg bw dose followed by another dose of CisPT 2 wk later. AHE groups were additionally treated with 400 mg/kg AHE for 3 days/week for 2 weeks. CisPT significantly deteriorated renal function parameters, i.e., PH, specific gravity, total protein, albumin, urea, creatinine, uric acid, globulin and blood urea nitrogen. CisPT treatment increased oxidative stress markers, while lower renal antioxidant enzymes. AHE pretreatment ameliorates significantly ( p  < 0.0001) CisPT-induced alterations in serum and urine markers for kidney function. Furthermore, AHE pretreatment more efficiently ( p  < 0.001) decreases oxidative stress markers, attenuate NF-κB, and IL-6 protein and mRNA expression by augmenting antioxidant enzyme levels compared to post-treatment. The histological observations verified the protective effect of AHE. In tumor xenograft mice, AHE treatment significantly reduced CisPT induced oxidative stress while it did not interfere with the anticancer efficacy of cisplatin as shown by significance ( p  < 0.001) decrease in tumor size after treatment. A. hydaspica AHE might provide a prospective adjuvant that precludes CisPT-induced nephrotoxicity without compromising its antitumor potential.
Molecular docking, pharmacokinetic studies, and in vivo pharmacological study of indole derivative 2-(5-methoxy-2-methyl-1H-indole-3-yl)-N′-(E)-(3-nitrophenyl) methylidene acetohydrazide as a promising chemoprotective agent against cisplatin induced organ damage
Cisplatin is an efficient anticancer drug against various types of cancers however, its usage involves side effects. We investigated the mechanisms of action of indole derivative, 2-(5-methoxy-2-methyl-1H-indol-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene] acetohydrazide (MMINA) against anticancer drug (cisplatin) induced organ damage using a rodent model. MMINA treatment reversed Cisplatin-induced NO and malondialdehyde (MDA) augmentation while boosted the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD). The animals were divided into five groups ( n  = 7). Group1: Control (Normal) group, Group 2: DMSO group, Group 3: cisplatin group, Group 4: cisplatin + MMINA group, Group 5: MMINA group. MMINA treatment normalized plasma levels of biochemical enzymes. We observed a significant decrease in CD4 + COX-2, STAT3, and TNF-α cell population in whole blood after MMINA dosage. MMINA downregulated the expression of various signal transduction pathways regulating the genes involved in inflammation i.e. NF-κB, STAT-3, IL-1, COX-2, iNOS, and TNF-α . The protein expression of these regulatory factors was also downregulated in the liver, kidney, heart, and brain. In silico docking and dynamic simulations data were in agreement with the experimental findings. The physiochemical properties of MMINA predicted it as a good drug-like molecule and its mechanism of action is predictably through inhibition of ROS and inflammation.
Innovative biopolymers composite based thin film for wound healing applications
Efficient wound and burn healing is crucial for minimising complications, preventing infections, and enhancing overall well-being, necessitating the development of innovative strategies. This study aimed to formulate a novel thin film combining chitosan, carboxymethyl cellulose, tannic acid, and beeswax for improved wound healing applications. Several formulations, incorporating chitosan, carboxymethyl cellulose, tannic acid, and beeswax in various percentages, were utilized to deposit thin films via the solvent evaporation technique, Mechanical properties, morphology, antioxidant activity, antibacterial efficacy, and wound healing potential were evaluated. The optimized thin film (M4), composed of 2% chitosan, 2% carboxymethyl cellulose, and 1% tannic acid, along with 0.2% glycerol and 0.2% tween80, exhibited a thickness of 39.0 ± 1.14 μm and a tensile strength of 0.275 ± 0.003 MPa. It demonstrated a swelling degree of 283.0 ± 2.0% and a drug release capacity of 89.4% within 24 h. The film also showed a low contact angle of 40.5° and a water vapour transmission rate of 1912.25 ± 13.10 g m −2 0.24 h −1 . FT-IR spectroscopy indicated that chitosan and carboxymethyl cellulose were cross-linked through amide linkages, with tannic acid occupying the interstitial spaces and hydrogen bonding stabilizing the structure. Microscopy of M4 revealed a uniform morphology. The film exhibited strong antioxidant activity of (95.17 ± 0.02%) and antibacterial efficiency (80.8%) against S. aureus . In a rabbit model, the film significantly enhanced burn and excision wound recovery, with 90.0 ± 3.3% healing for burns and 88.85 ± 1.7% for infected wounds by day 7. Complete skin regeneration was observed within 10–12 days. The M4 thin film demonstrated exceptional mechanical properties and bioactivity, offering protection against pathogens and promoting efficient wound healing. These findings suggest its potential for further investigation in treating various infections and its role in developing novel therapeutic interventions.
Biochemical and reproductive biomarker analysis to study the consequences of heavy metal burden on health profile of male brick kiln workers
The present study aims to assess the effect of a heavy metal burden on general health, biochemical parameters, an antioxidant enzyme, and reproductive hormone parameters in adult male brick kiln workers from Pakistan. The study participants ( n  = 546) provided demographic data including general health as well as body mass index. Blood was collected to quantitatively assess hematological, biochemical, and reproductive hormone parameters as well as heavy metal concentrations using both atomic absorption spectroscopy (AAS) and particle-induced X-ray emission (PIXE). The data showed that 10% of the brick kiln workers were underweight and 10% obese ( P  = 0.059), with workers also reporting multiple health issues. Heavy metal concentrations utilizing AAS revealed significantly ( p  = 0.000) higher levels of cadmium, chromium, and nickel, while PIXE detected more than permissible levels of Si, P, S, Cl, K, Ca, Zn, Ti ( p  = 0.052), Mn ( p  = 0.017), Fe ( p  = 0.055), Co ( p  = 0.011), Ni ( p  = 0.045), and Cu ( p  = 0.003), in the blood of kiln workers. Moreover, a significant increase in platelet count ( P  = 0.010), a decrease in sodium dismutase levels ( p  = 0.006), a major increase in reactive oxygen species ( p  = 0.001), and a reduction in protein content ( p  = 0.013) were evident. A significant increase in cortisol levels ( p  = 0.000) among the workers group was also observed. The concentration of LH and FSH increased significantly ( p  = 0.000), while that of testosterone decreased ( p  = 0.000) in the worker group compared with controls. A significant inverse relationship was found between cortisol, LH (r =  − 0.380), and FSH (r =  − 0.946), while a positive correlation between cortisol and testosterone was also evident (r = 0.164). The study concludes that increased heavy metal burden in the blood of brick kiln workers exposes them to the development of general and reproductive health problems due to compromised antioxidant enzyme levels, increased oxidative stress conditions, and a disturbing reproductive axis.